Sign In

Double bonds in alkenes and carbonyl compounds exhibit stretching frequencies in the diagnostic region of the IR spectrum. In addition, alkenes exhibit vinylic C–H stretching and C–H out-of-plane bending absorptions that are useful for identifying substitution patterns.

Stretching frequencies are affected by several factors, such as resonance, inductive effects, ring strain, dipole moment, and hydrogen bonding. Consequently, the stretching frequency of the carbonyl double bond varies in different functional groups. The C=O stretching absorptions of saturated esters and carboxylic acids appear at 1735–1750 cm-1 and 1710–1780 cm-1, respectively, while amide carbonyl stretching frequencies appear at 1630–1690 cm-1. While the carbonyl stretching of aldehydes and ketones is observed in the range 1680–1750 cm-1, aldehydes exhibit the characteristic C–H stretching absorption. Compared to saturated carbonyl compounds, delocalization lowers the C=O stretching absorptions in aromatic and unsaturated carbonyl compounds.

Carbonyl groups exhibit strong IR signals because of their large dipole moment arising from resonance and inductive effects. When the bond vibrates, the dipole oscillates, and the bond is surrounded by an oscillating electric field. This oscillating electric field interacts with the electric field of the IR radiation, increasing the efficiency of IR absorption.

Alkene double bonds, with much smaller dipole moments, have weaker oscillating electric fields that are inefficient at absorbing IR radiation. As a result, C=C bonds produce relatively weak signals, while carbonyl absorption signals are among the strongest in the IR spectrum.

From Chapter 13:

article

Now Playing

13.10 : IR Frequency Region: Alkene and Carbonyl Stretching

Molecular Vibrational Spectroscopy

469 Views

article

13.1 : Infrared (IR) Spectroscopy: Overview

Molecular Vibrational Spectroscopy

738 Views

article

13.2 : IR Spectroscopy: Molecular Vibration Overview

Molecular Vibrational Spectroscopy

1.2K Views

article

13.3 : IR Spectroscopy: Hooke's Law Approximation of Molecular Vibration

Molecular Vibrational Spectroscopy

644 Views

article

13.4 : IR Spectrometers

Molecular Vibrational Spectroscopy

583 Views

article

13.5 : IR Spectrum

Molecular Vibrational Spectroscopy

548 Views

article

13.6 : IR Absorption Frequency: Hybridization

Molecular Vibrational Spectroscopy

424 Views

article

13.7 : IR Absorption Frequency: Delocalization

Molecular Vibrational Spectroscopy

458 Views

article

13.8 : IR Frequency Region: X–H Stretching

Molecular Vibrational Spectroscopy

699 Views

article

13.9 : IR Frequency Region: Alkyne and Nitrile Stretching

Molecular Vibrational Spectroscopy

503 Views

article

13.11 : IR Frequency Region: Fingerprint Region

Molecular Vibrational Spectroscopy

472 Views

article

13.12 : IR Spectrum Peak Intensity: Amount of IR-Active Bonds

Molecular Vibrational Spectroscopy

436 Views

article

13.13 : IR Spectrum Peak Intensity: Dipole Moment

Molecular Vibrational Spectroscopy

444 Views

article

13.14 : IR Spectrum Peak Broadening: Hydrogen Bonding

Molecular Vibrational Spectroscopy

478 Views

article

13.15 : IR Spectrum Peak Splitting: Symmetric vs Asymmetric Vibrations

Molecular Vibrational Spectroscopy

504 Views

See More

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved