JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Engineering

Solid-state Graft Copolymer Electrolytes for Lithium Battery Applications

Published: August 12th, 2013

DOI:

10.3791/50067

1Materials Science and Engineering, Massachusetts Institute of Technology, 2Materials Processing Center, Massachusetts Institute of Technology

Lithium ion batteries employ flammable and volatile organic electrolytes that are suitable for ambient temperature applications. A safer alternative to organic electrolytes are solid polymer batteries. Solid polymer batteries operate safely at high temperatures (>120 °C), thus making them applicable to high temperature applications such as deep oil drilling and hybrid electric vehicles. This paper will discuss (a) the polymer synthesis, (b) the polymer conduction mechanism, and (c) provide temperature cycling for both solid polymer and organic electrolytes.

Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (<80 °C), flammable, and volatile organic electrolytes. These organic based electrolyte systems are viable at ambient temperatures, but require a cooling system to ensure that temperatures do not exceed 80 °C. These cooling systems tend to increase battery costs and can malfunction which can lead to battery malfunction and explosions, thus endangering human life. Increases in petroleum prices lead to a huge demand for safe, electric hybrid vehicles that are more economically viable to operate as oil prices continue to rise. Existing organic based electrolytes used in lithium ion batteries are not applicable to high temperature automotive applications. A safer alternative to organic electrolytes is solid polymer electrolytes. This work will highlight the synthesis for a graft copolymer electrolyte (GCE) poly(oxyethylene) methacrylate (POEM) to a block with a lower glass transition temperature (Tg) poly(oxyethylene) acrylate (POEA). The conduction mechanism has been discussed and it has been demonstrated the relationship between polymer segmental motion and ionic conductivity indeed has a Vogel-Tammann-Fulcher (VTF) dependence. Batteries containing commercially available LP30 organic (LiPF6 in ethylene carbonate (EC):dimethyl carbonate (DMC) at a 1:1 ratio) and GCE were cycled at ambient temperature. It was found that at ambient temperature, the batteries containing GCE showed a greater overpotential when compared to LP30 electrolyte. However at temperatures greater than 60 °C, the GCE cell exhibited much lower overpotential due to fast polymer electrolyte conductivity and nearly the full theoretical specific capacity of 170 mAh/g was accessed.

Lithium (Li) is a highly electropositive metal (-3.04 V relative to standard hydrogen electrode), and the lightest metal (equivalent weight of 6.94 g/mol and specific gravity of 0.53 g/cm3). This makes it attractive as a choice for the active material in the negative electrode and ideal for portable energy storage devices where size and weight matter. Figure 1 shows that lithium-based batteries (Li ion, PLiON, and Li metal) have higher energy densities than lead-acid, nickel-cadmium, and nickel-metal-hydride batteries 1.

A full lithium-ion battery consists of a cathode (positive), an anode (negative), ....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Graft Copolymer Synthesis18-19

  1. Synthesize the graft copolymers (POEM-g-PDMS and POEA-g-PDMS at 70:30 weight ratio) using a free radical polymerization approach by mixing 26 ml of POEM (or POEA) monomers (Figure 3), 12 ml of PDMS macromonomers, and 12 mg of 2,2'-Azobis(2-methylpropionitrile) (AIBN) (monomer:initiator [825:1]) in 160 ml of EA.
  2. Seal the flask containing the clear solution with a rubber septum and purge with ultra high purity argon for 45 min.
  3. He.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The room temperature cell cycling performance is shown in Figure 8. The left plot shows the charge and discharge profiles of cells with conventional liquid electrolyte (LP30) at 15 mA/g, and GCE/binder at 10 mA/g. Figure 9 shows the discharge voltage profiles of the solid polymer cells at room temperature, 60 °C, and 120 °C using a low current of 0.05 C. The discharge voltage profiles as functions of specific capacity are shown in Figure 10,where the discharge .......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The LiFePO4/GCE/Li curves show greater overpotential than the LiFePO4/LP30/Li curves on both charge and discharge. Since the GCE is used as both electrolyte and binder, ion conduction is provided to all of the cathode particles, and nearly the entire practical specific capacity (150 mAh/g) was accessible. The theoretical specific capacity of 170 mAh/g is not achieved since it is limited by lithium diffusion within LiFePO4 particles, which is low at room temperatures. The cycling capacitie.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors would like to thank Weatherford International for providing financial support.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Name of the reagent Company Catalogue number Comments (optional)
POEM Sigma Aldrich 26915-72-0  
POEA Sigma Aldrich 32171-39-4  
LiTFSI Sigma Aldrich 90076-65-6  
AIBN Sigma Aldrich 78-67-1  
EA Sigma Aldrich 141-78-6  
THF Sigma Aldrich 109-99-9  
PDMS Gelest 146632-07-7  
Argon Gas Air Gas   Ultra high purity (Grade 5)
PE Sigma Aldrich 8032-32-4  
LiFePO4 Gelon    
Carbon black SuperP   Super P
Lithium metal Alfa Aesar 7439-93-2  
PVDF binder resin Kynar   Kynar
PVDF Separator Celgard    
LP30 Merck   LiPF6 in EC:DMC
MACCOR battery tester MACCOR    
El-Cut EL-CELL    

  1. Tarascon, J. M., Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature. 414 (6861), 359-367 (2001).
  2. Scrosati, B., Hassoun, J., Sun, Y. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4 (9), 3287-3295 (2011).
  3. Goodenough, J. B., Kim, Y. Challenges for rechargeable batteries. J. Power Sources. 196 (16), 6688-6694 (2011).
  4. Wang, Y., He, P., Zhou, H. Olivine LiFePO4: development and future. Energy Environ. Sci. 4 (3), 805-817 (2011).
  5. Bruce, P. G., Scrosati, B., Tarason, J. Nanomaterials for rechargeable lithium batteries. Angew. Chem. 47 (16), 2930-2946 (2008).
  6. Choi, N., Yao, Y., Cui, Y., Cho, J. One dimensional Si/Sn - based nanowires and nanotubes for lithium-ion energy storage materials. J. Mater. Chem. 21 (27), 9825-9840 (2011).
  7. Jeong, G., Kim, Y. U., Kim, H., Kim, Y. J., Sohn, H. J. Prospective materials and applications for Li secondary batteries. Energy Environ. Sci. 4 (6), 1986-2002 (2011).
  8. Walker, C. W., Salomon, M. Improvement of ionic conductivity in plasticized PEO-Based solid polymer electrolytes. J. Electrochem. Soc. 140 (12), 3409-3412 (1993).
  9. Daniels, C., Besenhard, J. O. . Handbook of battery materials. , (2011).
  10. Bard, A. J., Faulkner, L. R. . Electrochemical methods: fundamentals and applications. , 864 (2001).
  11. Newman, J., Thomas-Alyea, K. . Electrochemical systems. , 672 (2004).
  12. Zu, C., Li, H. Thermodynamic analysis on energy densities of batteries. Energy Environ. Sci. 4 (8), 2614-2624 (2011).
  13. Balbuena, P., Wang, Y. . Lithium-ion Batteries: solid-electrolyte interphase. , (2004).
  14. Appetecchi, G. B., Scaccia, S., Passerini, S. Investigation on the Stability of the Lithium-Polymer Electrolyte Interface. J. Electrochem. Soc. 147 (12), 4448-4452 (2000).
  15. Bruce, P. G., Krok, F. Characterisation of the electrode/electrolyte interfaces in cells of the type Li/PEO LiCF3SO3/V6O13 by ac impedance methods. Solid State Ionics. 36 (3-4), 171-174 (1989).
  16. Huggins, R. . Energy Storage. , 400 (2010).
  17. Lee, S., Schömer, M., Peng, H., Page, K. A., Wilms, D., Frey, H., Soles, C. L., Yoon, D. Y. Correlations between ion conductivity and polymer dynamics in hyperbranched poly(ethylene oxide) llectrolytes for lithium-ion batteries. Chem. Mater. 23 (11), 2685-2688 (2011).
  18. Trapa, P. E., Reyes, A. B., Das Gupta, R. S., Mayes, A. M., Sadoway, D. R. Polarization in cells containing single-ion graft copolymer electrolytes. J. Electrochem. Soc. 153 (6), 1098-1101 (2006).
  19. Trapa, P. E., Won, Y. Y., Mui, S. C., Olivetti, E. A., Huang, B., Sadoway, D. R., Mayes, A. M., Dallek, S. Rubbery graft copolymer electrolytes for solid-state thin-film lithium batteries. J. Electrochem. Soc. 152 (1), A1-A5 (2005).
  20. Walker, C. W., Salomon, M. Improvement of ionic conductivity in plasticized peo-based solid polymer electrolytes. J. Electrochem. Soc. 140 (12), 3409-3412 (1993).
  21. Bard, A. J., Faulkner, L. R. . Electrochemical methods: fundamentals and applications. , 864 (2001).
  22. Michnick, R. B., Rhoads, K. G., Sadoway, D. R. Relative dielectric constant measurements in the butyronitrile-chloroethane system at subambient temperatures. J. Electrochem. Soc. 144 (7), 2392-2398 (1997).
  23. Orazem, M. E., Tribollet, B. . Electrochemical impedance spectroscopy. , (2008).
  24. Cogger, N. D., Evans, N. J. An introduction to electrochemical impedance measurement. Technical Note, Solartron Analytical Technical Report. No. 6, (1999).
  25. Marzantowiz, M., Dygas, J. R., Krok, F. Impedance of interface between PEO:LiTFSI polymer electrolyte and blocking electrodes. Electrochim. Acta. 53 (25), 7417-7425 (2008).
  26. Clarson, S. J., Semlyen, J. A. Studies of cyclic and linear poly(dimethyl-siloxanes): 21. high temperature thermal behavior. Polymer. 27 (1), 91-95 (1986).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved