A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We describe protocols for our mouse graft arteriosclerois (GA) models which involve interposition of a mouse vessel segment into a recipient of the same inbred strain. By backcrossing additional genetic changes into the vessel donor, the model can assess the effect of specific genes on GA.
Graft arteriosclerois (GA), also called allograft vasculopathy, is a pathologic lesion that develops over months to years in transplanted organs characterized by diffuse, circumferential stenosis of the entire graft vascular tree. The most critical component of GA pathogenesis is the proliferation of smooth muscle-like cells within the intima. When a human coronary artery segment is interposed into the infra-renal aortae of immunodeficient mice, the intimas could be expand in response to adoptively transferred human T cells allogeneic to the artery donor or exogenous human IFN-γ in the absence of human T cells. Interposition of a mouse aorta from one strain into another mouse strain recipient is limited as a model for chronic rejection in humans because the acute cell-mediated rejection response in this mouse model completely eliminates all donor-derived vascular cells from the graft within two-three weeks. We have recently developed two new mouse models to circumvent these problems. The first model involves interposition of a vessel segment from a male mouse into a female recipient of the same inbred strain (C57BL/6J). Graft rejection in this case is directed only against minor histocompatibility antigens encoded by the Y chromosome (present in the male but not the female) and the rejection response that ensues is sufficiently indolent to preserve donor-derived smooth muscle cells for several weeks. The second model involves interposing an artery segment from a wild type C57BL/6J mouse donor into a host mouse of the same strain and gender that lacks the receptor for IFN-γ followed by administration of mouse IFN-γ (delivered via infection of the mouse liver with an adenoviral vector. There is no rejection in this case as both donor and recipient mice are of the same strain and gender but donor smooth muscle cells proliferate in response to the cytokine while host-derived cells, lacking receptor for this cytokine, are unresponsive. By backcrossing additional genetic changes into the vessel donor, both models can be used to assess the effect of specific genes on GA progression. Here, we describe detailed protocols for our mouse GA models.
Graft arteriosclerois (GA), also called allograft vasculopathy, is a pathologic lesion that develops over months to years in transplanted organs characterized by diffuse, circumferential stenosis of the entire graft vascular tree 7. Early stages may cause eccentric and focal stenoses that are more obvious in arteries, thus more closely resembling stenoses seen in conventional atherosclerosis. The lumen loss of the graft vessels results from intimal expansion due to infiltration of host T cells and macrophages and especially to accumulation of extracellular matrix and smooth muscle-like cells originated from graft, host or both 5, 13, 19, that is inadequately compensated by outward vessel remodeling. In cardiac allografts, the most clinically significant lesions are those in the epicardial and intramyocardial coronary arteries. Ultimately, GA of the coronary arteries will cause ischemic heart failure. GA is the major cause of late cardiac graft loss. The stenoses of GA stop at the suture lines, strongly implicating the host response to graft alloantigens in its pathogenesis and leading us to classify GA as a form of chronic rejection 3. However, other forms of arterial injury may increase the risk of GA, either through increasing the net burden of injury or by intensifying and/or modulating the alloimmune response. The endothelial cell (EC) lining of graft arteries is preserved in human GA and the most superficial regions of the intima adjacent to the EC lining is the site most heavily infiltrated by host-derived IFN-γ-producing T cells and macrophages 11; in some patients GA is associated with the development of donor-specific alloantibodies that bind to graft EC 16 but the vessels show little evidence of the fibrinoid necrosis that is characteristic of acute antibody-mediated rejection 11.
The most critical component of GA pathogenesis is the proliferation of smooth muscle -like cells within the intima; if this process can be arrested, GA is unlikely to progress. Previous work from our group had shown that intimas of human coronary artery segments interposed into the infra-renal aortae of immunodeficient mice expand in response to adoptively transferred human T cells allogeneic to the artery donor and that this process could be inhibited by neutralizing human IFN-γ 18. Furthermore exogenous human IFN-γ could cause intimal (and medial) vascular smooth muscle cell (VSMC) proliferation in these arterial grafts in the absence of human T cells 15, 17. (It's important to note that human and mouse IFN-γ do not cross species, ruling out indirect effects on the mouse host in this experimental system.) These humanized mouse models have the benefit of recapitulating human T cell/vascular cell interactions and the intimal lesions are largely composed of human (i.e. graft-derived) cells, as has been observed in clinical specimens, but they do not fully recapitulate the clinical situation because they ignore the role of host macrophages and possibly other cell types involved in clinical transplant lesions. A conventional mouse model of this process could theoretically address this problem, complementing the limitations of the humanized model by involving a complete host immune system and providing the additional advantage of allowing the power of mouse genetic approaches to be applied to GA. The two most widely used mouse models involve heterotopic heart transplantation and orthotopic artery transplantation 1. The lesions that develop in the arteries of heterotopic heart grafts are largely made up of host cells, likely of bone marrow origin, whereas intimal cells of the arteries in human heart grafts are predominantly of graft origin 5, 13, 19. This is a significant distinction that has led us to develop alternative mouse models. Interposition of a mouse aorta from one strain into another mouse strain recipient is even more limited as a model for chronic rejection in humans because the acute cell-mediated rejection response in this mouse model completely eliminates all donor-derived vascular cells from the graft within two-three weeks 19. Consequently, the subsequent changes seen in the interposed vessel segment are solely a response of host cells that have repopulated the decellularized vessel scaffold, creating a highly artifactual situation of limited relevance as a model for the changes in graft vessels that occur in the clinic. We have recently developed two new mouse models to circumvent these problems 21. The first model involves interposition of a vessel segment from a male mouse into a female recipient of the same inbred strain (C57BL/6J). The second model involves interposing an artery segment from a wild type C57BL/6J mouse donor into a host mouse of the same strain and gender that lacks the receptor for IFN-γ (IFN-γR-KO) followed by administration of mouse IFN-γ (delivered via infection of the mouse liver with an adenoviral vector. Here, we describe detailed protocols and the advantages of our mouse GA models.
Mouse allograft and syngeneic graft transplantation model
All animal studies were approved by the institutional animal care and use committees of Yale University. For allograft model, segments of thoracic aorta from male, 4-5 week old WT (C57BL/6J) or IFN-γR-KO mice were interposed into the abdominal aorta of female recipient, 8-12 week old WT using an end-to-end microsurgical anastomotic technique (see next for details). For syngeneic graft model, segments of thoracic aortae from male, 4-5 week old WT mice were interposed into the abdominal aortae of male, 8-12 week old IFN-γR1-KO using an end-to-end microsurgical anastomotic technique. At 1 week postoperatively, the animals were inoculated i.v. with Ad5.CMV-mouse IFN-γ or Ad5.CMV-LacZ (Qbiogene) at 1 x 109 PFU. Serum mouse IFN-γ levels were measured by ELISA (eBioscience) at 1 and 5 weeks after adenovirus administration. Certain animals received BrdU (Sigma-Aldrich) at 100 mg/kg s.c. for 2 weeks before sacrifice.
End-to-end microsurgical anastomotic technique (Video will be taken for this part):
1. Donor Procedure
2. Recipient Procedure
Graft analysis
Artery grafts in allograft were procured at 4 weeks and grafts in syngeneic graft model were 6 weeks post-operatively (5 weeks after viral infection) and analyzed by standard histological techniques for Elastica-van Gieson (EVG) staining, hematoxylin and eosin (HE) staining and immunofluorescence staining. Pictures were taken using an immunofluorescence microscope system (Zeiss). Cell counting of nuclei surrounded by positive immunostaining was performed under high magnification and averaged from 5 cross-sections for each graft. The graft area measurements of the lumen (within the endothelium), intima (between the endothelium and internal elastic lamina, IEL), media (between the IEL and external elastic lamina, EEL), wall thickness (between the endothelium and external elastic lamina) and whole vessel (within the EEL) were calculated from 5 serial cross-sections, 150 μm apart for each graft, using computer-assisted image analysis and NIH Image 1.60 (http://rsbweb.nih.gov/nih-image).
Statistical analysis
All data are expressed as mean ± SEM. Two-tailed, paired t tests and a two-way ANOVA analysis were performed using the Prism software program (GraphPad Software). Differences with P<0.05 were considered to indicate statistical significance.
Mouse allograft arteriosclerosis (GA) model: In this model, a male donor aorta is transplanted into female recipient so that the host induces alloreactive T cell-mediated alloimmune responses against a minor Y antigen (the male-specific minor histocompatibility antigen H-Y) expressed on the graft 12, and in turn T cell-produced IFN-γ drives VSMC proliferation 20 as observed in other allograft transplantation models 2, 6, 8-10, 14. A segment of thoracic aorta from a ...
The described protocols are focused on mouse GA models. The procedures can be applied to other graft transplantation models. These models include humanized xenograft (i.e. human coronary artery segments interposed into the infra-renal aortae of immunodeficient mice), and acute rejection mouse GA model (i.e. a mouse aorta from one genetic strain into another genetic strain recipient). Our described mouse models are more to close human GA lesions. The first model involves interposition of a vessel segment...
We have nothing to disclose.
This work was supported by NIH grants R01 HL109420 to WM and AHA 9320033N to LY.
Name | Company | Catalog Number | Comments |
C57BL/6J (H-2b) | Jackson Laboratories (Bar Harbor, ME) | 000664 | Donor (5 weeks) Recipient (8-12weeks) |
Ketamine Hydrochloride Injection | Hospira Inc. | NDC 0409-2053 | Storage Solution(50 mg/ml) Working Solution(5 mg/ml) |
Xylazine Sterile Solution | Lloyd Inc. | NADA# 139-236 | Storage Solution(100 mg/ml) Working Solution(1 mg/ml) |
Ketoprofen | Fort Dodge Animal Health | NDC 0856-4396-01 | Storage Solution(100 mg/ml) Working Solution-oral (0.027 mg/ml) |
Heparin Sodium | Sagent Pharmaceticals | NDC 25021-400 | Storage Solution(1000 U/ml) Working Solution(100 U/ml) |
Saline solution (Sterile 0.9% Sodium Chloride) | CareFusion | AL4109 | |
0.9% Sodium Chloride Injection | Hospira Inc. | NDC 0409-4888-10 | To prepare the anesthetic |
Petrolatum Ophthalmic Ointment | Dechra Veterinary Products | NDC 17033-211-38 | |
Iodine Prep Pads | Triad Disposables, Inc. | NDC 50730-3201-1 | |
Alcohol Prep Pads | McKesson Corp. | NDC 68599-5805-1 | |
Microscope | Leica | MZ95 | |
Micro Scissors | Roboz Surgical Instrument Co. | RS-5693 | |
Spring Scissors | F.S.T | 15009-08 | To transect the aorta of donor or recipient |
Extra Narrow Scissors | F.S.T | 14088-10 | |
Needle Holder/Forceps | MICRINS | MI1542 | To hold the needle |
Fine Forceps | F.S.T | 11254-20 | |
Forceps | F.S.T | 11251-35 | |
Standard Pattern Forceps | F.S.T | 11000-12 | |
Forceps | F.S.T | 13011-12 | |
LANCASTER Eye Speculum | Zepf Medical Instruments | 42-1209-07 | |
Micro Vascular Clip | Roboz Surgical Instrument Co. | RS-6472 | |
Micro Clip Applying Forceps With Lock | Roboz Surgical Instrument Co. | RS-5440 | |
Black Polyamide Monofilament Suture | AROSurgical Instruments Corporation | Cat #T4A10Q07 | 10-0 suture, Needle=70 microns |
Black Monofilament Nylon Suture | Syneture (Covidien) | SN-1956 | 6-0 suture |
Non-Woven Songes | McKesson Corp. | Reorder No. 94442000 | |
1 ml Syringe | BD | REF 309659 | |
3 ml Syringe | BD | REF 309657 | |
10 ml Syringe | BD | REF 309604 | |
18G 1 1/2, Hypodermic Needle | BD | REF 305196 | |
25G 7/8, Hypodermic Needle | BD | REF 305124 | |
27G 1/2, Hypodermic Needle | BD | REF 305109 | |
30G 1/2, Hypodermic Needle | BD | REF 305106 | |
Hearting Pad | Sunbeam | Z-1228-001 | |
Trimmer | Wahl | 9854-500 | |
Table 2. Specific reagents and equipment. |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved