A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Microplate based procedures are described for the colorimetric or fluorometric analysis of extracellular enzyme activity. These procedures allow for the rapid assay of such activity in large numbers of environmental samples within a manageable time frame.
Much of the nutrient cycling and carbon processing in natural environments occurs through the activity of extracellular enzymes released by microorganisms. Thus, measurement of the activity of these extracellular enzymes can give insights into the rates of ecosystem level processes, such as organic matter decomposition or nitrogen and phosphorus mineralization. Assays of extracellular enzyme activity in environmental samples typically involve exposing the samples to artificial colorimetric or fluorometric substrates and tracking the rate of substrate hydrolysis. Here we describe microplate based methods for these procedures that allow the analysis of large numbers of samples within a short time frame. Samples are allowed to react with artificial substrates within 96-well microplates or deep well microplate blocks, and enzyme activity is subsequently determined by absorption or fluorescence of the resulting end product using a typical microplate reader or fluorometer. Such high throughput procedures not only facilitate comparisons between spatially separate sites or ecosystems, but also substantially reduce the cost of such assays by reducing overall reagent volumes needed per sample.
Microorganisms such as bacteria and fungi obtain nutrients and carbon from complex organic compounds through the production of extracellular enzymes. These enzymes typically hydrolyze polymers into smaller subunits that can be taken into the cell. Therefore, at an ecological level, these microbial extracellular enzymes are responsible for much of the nutrient mineralization and organic matter decomposition that occurs in natural environments. Enzymes such as cellobiohydrolase (CBH) and β-glucosidase are important for cellulose degradation and work in unison to catalyze the hydrolysis of cellulose to glucose1,2, which provides a utilizable carbon substrate for microbial uptake and assimilation. The enzyme phosphatase releases soluble inorganic phosphate groups from organophosphates, essentially mineralizing phosphate and making it available for use by most organisms3. Other enzymes, such as N-acetylglucosaminidase (NAGase), are important in chitin degradation and can make both carbon and nitrogen available for microbial acquisition4.
One of the procedures for the assay of microbial extracellular enzyme activity in natural environments is the use of artificial p-nitrophenyl (pNP) linked substrates, an approach that was originally developed to detect soil phosphatase activity5. This approach relies on the detection of a colored end product, p-nitrophenol, which is released when the artificial substrate is hydrolyzed by the appropriate enzyme. The p-nitrophenol can be subsequently quantified colorimetrically by measuring its absorbance at around 400-410 nm. This method has since been applied to detect other enzymes such as NAGase6, and has been used in various studies looking at microbial extracellular enzyme activity in soils and sediments7-9.
An alternative approach that was originally developed to assess extracellular glucosidase activity in aquatic environments10,11 makes use of 4-methylumbelliferone (MUB) linked substrates. The end product released (4-methylumbelliferone) is highly fluorescent and can be detected using a fluorometer with an excitation/emission setting around 360/460 nm. A variety of MUB-linked artificial substrates are available, permitting the fluorometric measurement of the activity of at least as many enzymes (e.g. β-glucosidase, cellobiohydrolase, NAGase, phosphatase) as can be assayed using the pNP-substrate colorimetric procedure. Other microbial extracellular enzymes, such as the protein-degrading leucine aminopeptidase, can be assayed fluorometrically using 7-amino-4-methylcoumarin (COU) linked substrates. Both MUB- and COU-linked substrates have been used to determine enzyme activity in various terrestrial and aquatic samples12,13.
While previous studies have described fluorometric or colorimetric microplate approaches to determine extracellular enzyme activity14; there is a need for a clear presentation of how to conduct such assays. Here we demonstrate procedures for conducting high throughput microplate techniques for the analysis of extracellular enzyme activity in soils and sediments using the colorimetric pNP-linked substrates approach and in natural waters using the fluorescent MUB-linked substrates technique. We focus on the measurement of the activities of β-glucosidase, NAGase, and phosphatase as these enzymes can be tied to carbon, nitrogen, and phosphorus cycling, respectively. However, the procedures described here can be applied to the measurement of other extracellular enzymes using different artificial substrates.
Colorimetric Analysis of Extracellular Enzyme Activity in Soils and Sediments
1. Preparation of Substrate and Buffer Solutions for Colorimetric Analyses of Enzyme Activity
2. Determination of a Standard to Convert Absorbance to pNP Concentration
3. Conducting the Enzyme Assay
4. Determination of Dry Mass of Samples
5. Calculation of Enzyme Activity per Dry Mass of Soil or Sediment
Enzyme activity = Final absorbance / (C x incubation time x sample dry mass)
Fluorescent Analysis of Extracellular Enzyme Activity in Natural Waters
1. Preparation of Substrate, Standard, and Buffer Solutions for Fluorometric Analyses of Enzyme Activity
2. Organizing Water Samples on a 96-Well Black Microplate
3. Setting up Sample, Standard, Quench, and Substrate Controls
4. Recording Fluorescence
5. Calculation of Enzyme Activity per Volume of Water
Enzyme activity = (mean sample fluorescence - mean initial sample fluorescence) / ((mean standard fluorescence / 0.5 mol) x (mean quench control fluorescence / mean standard fluorescence) x (0.2 ml) x (time in hr))
Soils and aquatic sediments typically have appreciable levels of extracellular enzyme activity as a result of attached microbial communities (biofilms) growing on the surface of particles. Figure 3 shows how this activity changes depending on the size of particles obtained from the surface sediment of a third order stream in northern Mississippi, USA. A previous study has shown that the bacterial communities on sediment particles from this stream can be separated into three distinct groups based on molec...
Determining the activity of a variety of microbial extracellular enzymes in soils and sediments can provide useful insights into rates of nutrient mineralization and organic matter processing17. However, soils can vary in their moisture levels, so it is important to standardize activity to soil dry weight. This requires an additional drying step (typically of two days) beyond simply measuring enzyme activity. Thus, in contrast to assays of enzyme activity in water samples that provide near instantaneous result...
The authors declare that they have no competing financial interests.
Funding for aspects of this work was provided by various sources including the United States Department of Agriculture Specific Cooperative Agreement 58-6408-1-595 and the National Science Foundation (award 1049911).
Name | Company | Catalog Number | Comments |
REAGENTS AND MATERIALS | |||
Glacial acetic acid | Various suppliers | ||
Sodium acetate | Various suppliers | ||
Sodium hydroxide | Various suppliers | ||
p-Nitrophenol | Fisher | BP612-1 | Alternates available |
p-Nitrophenyl (pNP)-phosphate | Sigma | N3234 | pNP-substrate |
pNP-β-glucopyranoside | Sigma | N7006 | pNP-substrate |
pNP-β-N-acetylglucosaminide | Sigma | N9376 | pNP-substrate |
Clear 96-well microplates | Fisher | 12-563-301 | Alternates available |
96-well deep well blocks | Costar | 3958 | Alternates available |
Aluminum weigh pans | Various suppliers | ||
Sterile 15 ml centrifuge tubes | Various suppliers | ||
Sterile 50 ml centrifuge tubes | Various suppliers | ||
4-Methylumbelliferone | Sigma | M1381 | |
4-Methylumbelliferyl (MUB)-phosphate | Sigma | M8883 | MUB-substrate |
4-MUB-glucopyranoside | Sigma | M3633 | MUB-substrate |
4-MUB-N-acetylglucosaminide | Sigma | M2133 | MUB-substrate |
Sodium bicarbonate | Various suppliers | ||
Black 96-well microplate | Costar | 3792 | |
Pipette reservoir | Various suppliers | ||
EQUIPMENT | |||
Centrifuge | Eppendorf | 5810R | |
Centrifuge rotor | Eppendorf | A-4-81 | For microplates/deep-well blocks |
Microplate reader | BioTek | Synergy HT | Alternates available |
Microplate fluorometer | BioTek | FLx 800 | Alternates available |
8-channel pipettor | Various suppliers |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved