A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Pulse wave velocity (PWV) measurement assesses arterial stiffness by a tonometry-based system that measures the speed with which arterial pressure wave travels along the arterial tree, typically approximating the time that it takes this wave to travel from the descending aorta (using the carotid artery as a surrogate) to the femoral artery. Carotid-femoral PWV increases two- to threefold across the adult lifespan.
Carotid-femoral pulse wave velocity is considered the gold standard for measurements of central arterial stiffness obtained through noninvasive methods1. Subjects are placed in the supine position and allowed to rest quietly for at least 10 min prior to the start of the exam. The proper cuff size is selected and a blood pressure is obtained using an oscillometric device. Once a resting blood pressure has been obtained, pressure waveforms are acquired from the right femoral and right common carotid arteries. The system then automatically calculates the pulse transit time between these two sites (using the carotid artery as a surrogate for the descending aorta). Body surface measurements are used to determine the distance traveled by the pulse wave between the two sampling sites. This distance is then divided by the pulse transit time resulting in the pulse wave velocity. The measurements are performed in triplicate and the average is used for analysis.
Pulse Wave Velocity (PWV) is regarded as the gold standard in the assessment of arterial stiffness2. While not used clinically in the United States, it has been validated and widely used in clinical settings throughout Europe3. Changes in PWV have been correlated with cardiovascular risk factors such as hypertension, obesity, impaired glucose tolerance, and dyslipidemia. Higher aortic stiffness has been associated with increased risk for a first cardiovascular event4, muscle mass decline5, and slower gait speed in subjects with peripheral arterial disease6. Assessment of PWV is accomplished by analyzing the speed with which a pulse of blood travels from the carotid artery to the femoral artery7. It is a relatively simple method with highly reproducible results. Advances in technology continue to simplify the procedure, reducing operator dependency and decreasing the amount of time required for the exam. The system used in our laboratory is produced by SphygmoCorand utilizes an EKG and a high-fidelity tonometer to acquire waveforms from the carotid and femoral pulses. The software then analyzes these variables to determine the velocity by 1) estimating the time that the pulse wave takes to travel between the carotid and femoral sites by referencing the timing of the pressure wave arrival at each arterial site relative to the electrocardiographic waveforms 2) dividing the measured distance between the two sites by the estimated time. The closer together the sampling sites, the less accurate the PWV, limiting the use of this method to larger vessels such as the femoral and carotid arteries. In addition to determining PWV, the system can calculate the pressure in the ascending aorta by applying a transfer function to the waveform produced by the radial pulse8 which is the "central pressure" and the pressure that most directly impacts the heart at time of ejection. This information can aid in the assessment of the arterial system's effect on the left ventricle in a reliable and noninvasive manner9. Alternative techniques used for the examination of vascular stiffness, such as carotid distensibility via echo tracking, require a great deal of technical expertise and are more time consuming than the PWV. Echo tracking also generally utilizes video-image analysis and therefore the accuracy of these measurements are limited3. Other techniques for examining vascular changes include assessment of carotid-intima medial thickness (IMT) which provides results more closely related to atherosclerotic progression although the cross-sectional and transverse images obtained can provide a crude approximation of carotid elastance. This method, however, is plagued by some of the same constraints as the distensibility studies described above. As researchers continue to look at the role arterial stiffness plays in various disease states, PWV measurement will likely continue to provide a quantitative and reproducible surrogate endpoint.
1. Procedure
2. Central Blood Pressure Measurement Using Pulse Wave Analysis (PWA)
3. Arterial Stiffness Measurement Using Pulse Wave Velocity (PWV)
4. Shut Down
Table 1. PWV results are produced in meters per second. In healthy subjects, these speeds can range from an average 6.2 m/sec (in subjects under 30) to 10.9 m/sec (in subjects...
The measurement of pulse wave velocity (PWV) is a noninvasive method for analyzing central arterial stiffness in a relatively simple and reproducible manner3. To assess PWV, the carotid (as a surrogate for the descending aorta) and femoral pulse waveforms are acquired using a high-fidelity tonometer; the time delay in pulse wave arrival at the between the two sites is estimated referencing to a concurrently recorded EKG waves by custom designed computer software that conforms to the propagative model of the ar...
The authors declare that they have no competing financial interests. The authors received assistance with protocol description and performance of study from SphygmoCor which manufactures this product described.
This research was supported by the Intramural Research Program of the NIH, National Institute on Aging and the Baltimore Longitudinal Study on Aging. A portion of that support was through an R&D contract with MedStar Research Institute. Standard protocol and technical expertise was provided by AtCor.
Name | Company | Catalog Number | Comments |
SphygmoCor System | AtCor | SPT-304, Module EM3 |
A correction was made to Pulse Wave Velocity Testing in the Baltimore Longitudinal Study of Aging. There was an error with the author, Majd AlGhatrif's, name. The author's name has been corrected to:
Majd AlGhatrif
instead of:
Majd al Ghatrif
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved