A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
We describe a relatively simple method for ex vivo live imaging of the tumor cell-stroma interactions within lung metastasis, utilizing fluorescent reporters in mice. Using spinning-disk confocal microscopy, this technique enables visualization of live cells for at least 4 hr and could be adapted to study other inflammatory lung conditions.
Metastasis is a major cause for cancer-related morbidity and mortality. Metastasis is a multistep process and due to its complexity, the exact cellular and molecular processes that govern metastatic dissemination and growth are still elusive. Live imaging allows visualization of the dynamic and spatial interactions of cells and their microenvironment. Solid tumors commonly metastasize to the lungs. However, the anatomical location of the lungs poses a challenge to intravital imaging. This protocol provides a relatively simple and quick method for ex vivo live imaging of the dynamic interactions between tumor cells and their surrounding stroma within lung metastasis. Using this method, the motility of cancer cells as well as interactions between cancer cells and stromal cells in their microenvironment can be visualized in real time for several hours. By using transgenic fluorescent reporter mice, a fluorescent cell line, injectable fluorescently labeled molecules and/or antibodies, multiple components of the lung microenvironment can be visualized, such as blood vessels and immune cells. To image the different cell types, a spinning disk confocal microscope that allows long-term continuous imaging with rapid, four-color image acquisition has been used. Time-lapse movies compiled from images collected over multiple positions and focal planes show interactions between live metastatic and immune cells for at least 4 hr. This technique can be further used to test chemotherapy or targeted therapy. Moreover, this method could be adapted for the study of other lung-related pathologies that may affect the lung microenvironment.
The deadliest aspect of cancer is metastasis, which accounts for more than 90% of cancer-related morbidity and mortality1. Metastasis is a multistep process and due to its complexity, the exact cellular and molecular mechanisms that govern metastatic dissemination and growth are still elusive. To metastasize, tumor cells in the primary tumor must detach from their neighboring cells and basement membrane, cross through the extracellular matrix, intravasate, travel via blood or lymphatic vessels, extravasate at the secondary site, and finally, survive and establish secondary tumors. In addition to the properties of the tumor cells, the contribution from the m....
Access restricted. Please log in or start a trial to view this content.
All procedures described must be performed in accordance with guidelines and regulations for the use of vertebrate animals, including prior approval by the local Institutional Animal Care and Use Committee (IACUC).
1. Generation of Lung Metastases for Ex vivo Live Imaging (Transgenic or Tail Vein Injection)
NOTE: Lung metastases can be generated by utilizing genetically engineered mouse models or by intravenous (i.v) injection of cancer cells.
Access restricted. Please log in or start a trial to view this content.
Using spinning-disk confocal microscopy, various mouse model systems and injectables, the metastatic microenvironment can be visualized and tracked over time. Using an MMTV-PyMT; ACTB-ECFP; c-fms-EGFP triple transgenic mouse model, different cellular components are fluorescently labeled (Figure 2A, Movie 1). The typical structure of the lung parenchyma can be visualized in the CFP channel since all cells express ECFP under the β-actin promoter. Larger/multicellular lung met.......
Access restricted. Please log in or start a trial to view this content.
This manuscript describes a detailed method for ex vivo live imaging of lung metastasis in mouse models of metastasis. This imaging protocol provides a direct visualization of the dynamic and spatial tumor cell-stroma interactions within the lung microenvironment. It is a relatively easy and fast method that allows reliable imaging of lung metastasis for at least 4 hr. Movies acquired from these experiments can be used to track dynamic processes as cell motility and cellular interactions.
Access restricted. Please log in or start a trial to view this content.
The authors have no conflicts of interest to disclose. All animal experiments were conducted in accordance with IACUC approved protocols, UCSF.
We thank Nguyen H. Nguyen for her technical help and Audrey O’Neill for support with the Zeiss Cell Observer spinning-disk confocal microscope. This work was supported by a Department of Defense postdoctoral fellowship (W81XWH-11-01-0139) and the Weizmann Institute of Science-National Postdoctoral Award Program for Advancing Women in Science (to V.P.).
....Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
MMTV-PyMT/FVB mice | Jackson Laboratory | 2374 | Female mice |
ACTB-ECFP/FVB mice | UCSF Werb lab | Female mice | |
c-fms-EGFP/FVB mice | UCSF Werb lab | Female mice | |
FVB mice | Jackson Laboratory | 1800 | Female mice |
GFP+ VO-PyMT cells | UCSF Werb lab | ||
70,000 kDa Dextran, rhodamine-conjugated | Invitrogen | D1818 | Dilute to 4mg/ml in 1 x PBS and store at -20 °C. Use 0.4 mg per animal. |
10,000 kDa Dextran, Alexa Fluor 647 conjugated | Invitrogen | D22914 | Dilute to 4mg/ml in 1 x PBS and store at -20 °C. Use 0.4 mg per animal. |
Anti-mouse Gr-1 antibody Alexa Fluor 647 | UCSF Monoclonal antibody core | Stock 1mg/ml. Use 7 ug per animal. | |
Anesthetic | Anesthesia approved by IACUC, used for anesthesia and/or euthanesia | ||
1X PBS | UCSF cell culture facility | ||
PBS, USP sterile | Amresco INC | K813-500ML | Ultra pure grade for i.v. injection |
Styrofoam platform | Will be used as dissection board | ||
Fine scissors sharp | Fine Science Tools | 14060-11 | |
Forceps | Roboz Surgical Store | RS-5135 | |
Hot bead sterilizer | Fine Science Tools | 18000-45 | Turn ON 30min before use |
Air | UCSF | ||
Oxygen | UCSF | ||
Carbon dioxide | UCSF | ||
1 mL syringe without needle | BD | 309659 | |
27 G x 1/2 needle | BD | 305109 | for i.v. injection |
20 G x 1 needle, short bevel | BD | 305178 | |
Low-melting-temperature agarose | Lonza | 50111 | To make 10 ml of solution, weigh 0.2 g of agarose, add to 10 ml 1 x PBS, and heat to dissolve. Agarose will solidify at room temperature, so maintain in a 37 °C water bath until used for inflation. |
RPMI-1640 medium without phenol red | Life Technologies | 11835-030 | |
24 well Imaging plate | E&K scientific | EK-42892 | |
Glass cover slides, 15 mm | Fisher Scientific | 22-031-144 | |
Digital CO2 and temperature controller | Okolab | DGTCO2BX | http://www.oko-lab.com |
Climate chamber | Okolab | http://www.oko-lab.com | |
Cell Observer spinning disk confocal microscope | Zeiss | ||
Zen software | Zeiss | ||
Inverted microscope | Carl Zeiss Inc | Zeiss Axiovert 200M | |
ICCD camera | Stanford Photonics | XR-Mega-10EX S-30 | |
Spinning disk confocal scan-head | Yokogawa Corporation | CSU-10b | |
Imaris | Bitplane | ||
mManager | Vale lab, UCSF | Open-source software |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved