JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Epithelial to mesenchymal transition (EMT) allows cancers to become invasive. To investigate EMT, a neural stem cell (NSC)-based in vitro model devoid of serum and enzymes is described. This standardized system allows quantitative and qualitative assessment of cell migration, gene and protein expression. The model is suited for drug discovery.

Abstract

Epithelial to mesenchymal transition (EMT) describes the process of epithelium transdifferentiating into mesenchyme. EMT is a fundamental process during embryonic development that also commonly occurs in glioblastoma, the most frequent malignant brain tumor. EMT has also been observed in multiple carcinomas outside the brain including breast cancer, lung cancer, colon cancer, gastric cancer. EMT is centrally linked to malignancy by promoting migration, invasion and metastasis formation. The mechanisms of EMT induction are not fully understood. Here we describe an in vitro system for standardized isolation of cortical neural stem cells (NSCs) and subsequent EMT-induction. This system provides the flexibility to use either single cells or explant culture. In this system, rat or mouse embryonic forebrain NSCs are cultured in a defined medium, devoid of serum and enzymes. The NSCs expressed Olig2 and Sox10, two transcription factors observed in oligodendrocyte precursor cells (OPCs). Using this system, interactions between FGF-, BMP- and TGFβ-signaling involving Zeb1, Zeb2, and Twist2 were observed where TGFβ-activation significantly enhanced cell migration, suggesting a synergistic BMP-/TGFβ-interaction. The results point to a network of FGF-, BMP- and TGFβ-signaling to be involved in EMT induction and maintenance. This model system is relevant to investigate EMT in vitro. It is cost-efficient and shows high reproducibility. It also allows for the comparison of different compounds with respect to their migration responses (quantitative distance measurement), and high-throughput screening of compounds to inhibit or enhance EMT (qualitative measurement). The model is therefore well suited to test drug libraries for substances affecting EMT.

Introduction

During several stages of embryonic development, epithelial cells lose their strong adherence to each other (e.g., tight junctions) and acquire a migratory phenotype in a process called epithelial to mesenchymal transition (EMT)1. EMT is required for the formation of additional cell types, such as the mesenchymal neural crest cells, a population that segregates from the neuroepithelium2. EMT is not only essential during embryonic stages but also required at later stages of adult life to maintain physiological processes in the adult organism, such as wound healing3and central nervous system (CNS) regeneration in demyelinating lesions4.

Epithelial tumors are known to reactivate EMT as an initiation step for migration, invasion and metastasis, ultimately leading to cancer progression1,3. EMT is indeed centrally linked to strong migration1,3. The cellular steps of conditioning, initiating, undergoing and maintaining EMT are not fully understood and need further investigation.

Here, a standardized in vitro EMT model system based on NSCs, with defined growth factors and media (no serum and no enzyme usage) is presented. This model system is of relevance for scientists working on EMT. The Snail, Zeb and Twist protein families have been shown to be critical for EMT both in development and disease1. The Snail, Zeb and Twist families are also involved in the presented system. The system is based on a specific region of the forebrain that normally does not undergo EMT providing a particular advantage for the study of initial events during EMT induction.

The model system could potentially be applied to study EMT in epithelia outside the CNS, since key EMT inducers, such as the Snail, Zeb and Twist proteins, are also found during EMT in tissue systems outside the CNS. This model system allows the standardized isolation of NSCs from the developing cortex to study stem cell features in general and EMT in particular. Using this system, we isolated NSCs, induced EMT and studied the subsequent migration under the effect of FGF2 and BMP4. We observed that FGF- and BMP-signaling interacts with TGFβ-signaling to promote cell migration, thus validating the model system.

Access restricted. Please log in or start a trial to view this content.

Protocol

All animal procedures followed the 'Guide for the Care and Use of Laboratory Animals' (NIH publication, 8th edition, 2011) and were approved by the Animal Welfare Committee of Basel (Swiss Guidelines for the Care and Use of Animals). By these guidelines the animal protocol is considered of "lowest animal severity grade".

1. Preparation of Expansion Medium

Note: Work in aseptic conditions as standard for tissue culture.

  1. Take two 15 ml tubes, and add 5 ml of L-glutamine-free DMEM/F12 (1:1) from a 500 ml medium bottle into each of the two 15 ml tubes. To the first 15 ml tube, add 50 mg human apo-transferrin, 50 μl of putrescine 1 M stock (0.1 mM final concentration) and 30 μl of sodium selenium 500 µM stock (final concentration 30 nM).
    1. Filter through a 0.2 µm syringe filter into the original DMEM/F12 bottle.
  2. To the second 15 ml tube, add 12.5 mg insulin. Add 6 - 9 drops of 1 M NaOH. Vortex to dissolve insulin completely. Filter through a 0.2 µm syringe filter into the original DMEM/F12 bottle.
    Note: NaOH is toxic and corrosive. Use protective gloves, coat, and safety goggles.
  3. Add 5 ml penicillin (10,000 units/ml) / streptomycin (10,000 µg/ml) / amphotericin B (25 µg/ml) to the DMEM/F12 medium bottle.
  4. Add 5 ml of 200 mM L-glutamine stock freshly thawed or oligopeptides containing glutamine (200 mM L-alanyl-L-glutamine dipeptide) to the DMEM/F12 medium bottle.
  5. Shake well. Prepare 50 ml aliquots.
    Note: Expansion medium can be stored for at least 2 weeks at 4 °C. Aliquoted tubes show less pH changes compared to medium kept in 500 ml bottles.

2. Preparation of Passaging Medium

  1. To 1 L Ca2+- and Mg2+-free HBSS media, add 990.85 mg Glucose (5 mM final concentration) and 840.10 mg NaHCO3 (10 mM final concentration). Adjust pH to 7.3 with HCl (1 M stock). Filter sterilize with 0.2 µm filter and make 50 ml aliquots.
    Note: Passaging medium can be stored for at least 4 weeks at 4 °C.

3. Preparation of Growth Factors

  1. Prepare sterile 1x PBS with 1% BSA (PBS-BSA) alone or with hydrochloric acid (HCl) at 4 mM (PBS-BSA-HCl).
    Caution: HCl is corrosive and toxic and requires special safety measures (coats, goggles, gloves, hood).
  2. Dissolve 10 µg/ml recombinant human Fibroblast Growth Factor 2 (rhFGF2) in PBS-BSA (10 ng/ml final concentration), 10 µg/ml recombinant human Bone Morphogenetic Protein 4 (rhBMP4) in PBS-BSA (10 ng/ml final concentration), and 20 µg/ml recombinant human Transforming Growth Factor β 1 (rhTGFβ1) in PBS-BSA-HCl (40 ng/ml final concentration).
    1. Do not filter sterilize. Prepare aliquots.
      Note: Growth factor aliquots can be stored at -20 °C for at least 2 years.

4. Coating of Cell Culture Dishes

  1. Dissolve 1,875 mg Poly-L-ornithine (PLO) in 500 ml distilled H2O to prepare a 250x PLO stock. Filter sterilize using a 0.2 µm syringe filter and make 2 ml aliquots.
    Note: These aliquots can be stored at -20 °C for at least 2 years.
  2. Dissolve 1 mg bovine fibronectin in 1 ml sterile-distilled H2O to prepare 1,000x fibronectin stock. Do not vortex as this may clot the sticky protein. Shake gently by hand for 10 min.
    1. Incubate for 1 hr at room temperature with occasional shaking. Check for complete dissolution. Warm the solution to less than 37 °C for the complete dissolution of fibronectin. Do not filter-sterilize.
      Note: The solution may be stored at 4 °C for up to 6 months.
  3. Use plasma-pretreated plastic cell culture dishes (100 mm or other sizes as required for the experiment). To assess migration, use 35 mm dishes with 500 µm grid. Incubate dishes overnight with 2 ml 1x PLO for 12 hr at 37 °C in a 5% CO2 tissue culture incubator. Wash twice with 2 ml 1x PBS.
  4. Add 2 ml 1x fibronectin (1 μg/ml final concentration) and incubate dishes for a minimum of 12 hr at 37 °C in a 5% CO2 incubator. Remove fibronectin just before plating the cells.
    Note: Fibronectin-coated dishes may be stored for at least 2 weeks at 37 °C.

5. Standardized Dissection and Preparation of the Cortical Subventricular Zone (SVZ)

  1. Obtain rat embryonic day 14.5 (E14.5, Sprague-Dawley) and mouse E13.5 (C57BL/6) embryos by timed-mating. Mate animals from 18:00 until 08:00 the next morning. Noon after the day of mating is considered E0.5.
  2. Anesthetize the pregnant animal with 5% Isoflurane and 0.8 L/min oxygen flow. Check response by paw compression with sharp dissection forceps. Decapitate the animal. Avoid CO2 asphyxiation as CO2 affects stem cell recovery.
  3. Retrieve embryos by caesarean section.
    1. Place animal in supine position and disinfect fur with 70% ethanol. Use surgical forceps and scissors to make V-shaped skin incision of about 8 cm in the lower abdomen above the uterus. Incise only skin with fur while keeping muscular walls intact.
    2. Use fresh forceps and scissors to incise the muscles and the abdominal muscular wall to enter the peritoneum.
    3. Identify the uterus in the lower posterior peritoneum. Remove the uterus by sharp separation from the surrounding tissues.
    4. Wash the uterus with embryos with sterile 1x PBS and place in ice-cold 1x PBS.
    5. Use fine-tipped scissors to open the uterine walls to release embryo by embryo under a dissection microscope (3X magnification, Figure 1B). Use a pair of forceps to remove the embryonic hulls (Figure 1B). Keep embryos in expansion medium on ice.
    6. Verify the correct developmental stage by the Atlas of the Developing Rat Nervous System5. The correct embryo size is shown in Figure 1B.
    7. Check correct age further by presence of beginning digit formation in the rat forelimb (FL) as illustrated in Figure 1A.
      Note: The hind limb (HL) does not yet show digit separation (Figure 1B).
  4. For dissection, transfer embryos to uncoated Petri dishes filled with ice-cold 1x PBS. Perform dissection under a stereo dissection microscope (3X to 20X magnification) using autoclaved fine forceps.
    Note: The Petri dishes prevent attachment of tissue to the dish surface as may happen with plasma-coated cell culture dishes. Sharpened tungsten wire needles or similar are also helpful for certain steps of dissection.
  5. Remove the head skin and skull starting at the intersection of the developing telencephalon (TEL) and diencephalon (DI) (Figure 1B) by pulling simultaneously anteriorly and posteriorly with two forceps in order to gain access to the developing neural tube (Figure 1C).
  6. Identify the midbrain-hindbrain-boundary (MHB, black arrow head in Figure 1B-D), separating the mesencephalon (MES) from the rhombencephalon. Cut the rhombencephalon just at or below the MHB (Figure 1D, triangular arrow).
    ​Note: The additional subcutaneous space at the MHB facilitates skin removal without harming the neural tube.
  7. Sever the connection between the telencephalon/diencephalon at the skull base with the facial skeleton (Figure 1E). This results in a block containing the telencephalon, diencephalon and mesencephalon (TEL-DI-MES) (Figures 1F-H).
  8. Transfer the TEL-DI-MES block into expansion medium on ice. Keep it completely covered in expansion medium in an uncoated Petri dish. Hold the block at the mesencephalon with a pair of forceps to avoid touching the telencephalon that contains the cortical SVZ with NSCs.
  9. Repeat steps 5.5 to 5.8 with all embryos (Figure 1F-H).
  10. Transfer one TEL-DI-MES block into fresh ice-cold 1x PBS. Cut along the dotted line in the anterior mesencephalon (Figure 1F-H), separating the mesencephalon from the diencephalon, as shown in Figure 1I.
  11. Separate the DI from the TEL by cutting along the dashed lines in Figure 1F. See isolated telencephalon in Figure 1J.
  12. Split the two telencephalic hemispheres, cutting along the dotted line in Figure 1J. This results in two separated hemispheres as illustrated in Figure 1K.
    Note: The left hemisphere is magnified in Figure 1L.
  13. Identify the medial ganglionic eminences (MGE, Figure 2A; *) and lateral ganglionic eminences (LGE, Figure 2A; +) visible through the future Foramen interventriculare.
    1. Using forceps or needle, dissect along a straight line at the intersection between the MGE and LGE and the anterior cortex (ant-ctx, Figure 2B). Cut a straight line through cortex, hippocampus (hip) and choroid plexus (CP). This separates the anterior cortex including the olfactory bulb (ob) from the ganglionic eminences (GE, Figures 2B, C).
  14. Cut a second straight line at the intersection of the caudal ganglionic eminence (CGE, Figure 2C, D) and the posterior cortex (Figure 2C), again cutting through cortex, hippocampus and choroid plexus.
  15. Flatten out the telencephalon. Completely remove the posterior pole and the olfactory bulb (Figure 2D). Identify the cortical hem containing the hippocampus and the choroid plexus (Figure 2C), as defined previously 6,7.
    ​Note: The hippocampus has a thinner neuroepithelium than the cortex. The CP contains red vessels.
    1. Separate the cortical hem from the cortex, leaving the size of the cortex identical to the size of the ganglionic eminences (Figure 2D). This results in a block of the cortex (the target tissue) and the ganglionic eminences (GE, Figure 2D).
  16. Flip the cortex-GE block with the ventricular (inner) side to the dish surface.
    Note: The outer surface of the hemisphere will face the experimenter (Figure 2E). On the outer surface are the blood vessel-containing meninges (Figure 2E).
    1. Pin the GE to the dish surface with the left hand and peel the meninges off with a pair of forceps in the right (dominant) hand (Figure 2F).
      Note: This is the technically most demanding step because the meninges strongly adhere to the cortex. The separation of meninges from the cortex is facilitated by cutting a completely straight line (not jagged) in steps 5.13.1 and 5.14.
  17. Repeat steps 5.12 to 5.16 for the other hemisphere and all embryos. Cut the cortex along the LGE in a distance of half the main diameter of the LGE (Figure 2G, 2H). The dissected cortex spans an area of 1.2 mm x 2.4 mm (Figure 2H) and includes the SVZ/germinal layer with the NSCs.

6. Preparation of Explant Cultures

  1. Cut the cortex into explants of less than 400 µm diameter (Figure 2I). Use a 400 µm grid (Supplementary Figure 1) positioned below the dissection Petri dish for reference (Figure 2H and 2I). Transfer all explants into a fresh Petri dish with ice-cold expansion medium.
  2. Remove the fibronectin from a tissue culture dish (step 4.4). Allow it to dry. Add 1 ml of cold expansion medium to the center of the 35 mm dish with grid dimension of 10 mm x 10 mm (Figure 3). Allow the medium to form a spherical drop (Figure 3).
  3. Insert up to 8 explants to the center of the drop. The explants should be ideally located on the grid with at least 3 mm distance between each other for the migration analysis (see section 8).
  4. Incubate the dish for about 1 hr in a cell culture incubator (37 °C, 21% O2, 5% CO2) for attachment of the explants. Allow the explants to settle and attach to the fibronectin-coated surface. Do not shake the dish, since the explants may detach and move out of the optimal grid center.
  5. After 1 hr incubation (37 °C, 21% O2, 5% CO2), fill up the dish to a total volume of 2 ml expansion medium plus the growth factors or substances of interest to test and incubate.
    Note: Neither enzymatic digestion, nor serum or centrifugation are necessary for explant preparation. This is optimal for cell integrity.

7. Preparation of NSC Single Cell Culture

  1. Warm up expansion and passaging medium at 37 °C.
  2. Transfer the dissected cortex pieces (from step 5.17) into a 15 ml tube with cold expansion medium (tube A). Centrifuge the cortex pieces for 5 min at 1,200 x g. Aspirate the supernatant. Add 200 µl pre-warmed expansion medium to resuspend the cortex pieces.
  3. Add 700 µl of pre-warmed passaging medium to the 15 ml tube with a P1,000 tip (tube A). Gently resuspend the pellet. Place the tip at the bottom of the 15 ml tube. Gently and slowly dissociate the tissue pieces by suctioning three times with the P1,000 tip.
    Note: Passaging medium promotes cell separation and is required to avoid the use of enzymes.
  4. Allow the tube to sit for 30 to 60 sec for larger (heavier) undissociated pieces to settle at the bottom. Single dissociated cells will remain in the supernatant. Transfer about 700 µl of the supernatant to a fresh 15 ml tube (tube B).
  5. Repeat steps 7.3 and 7.4 to dissociate the larger pieces.
  6. Repeat steps 7.3 and 7.4 a second time to dissociate the larger pieces. Transfer all supernatant to the fresh 15 ml tube (tube B).
  7. Add expansion medium to a total volume of 5 ml. Count cells using a hemocytometer. Assess dead cells by trypan-blue staining.
    Note: Small NSCs tolerate the steps 7.2 to 7.6 better than larger cells. From 10 embryos expect about 4 x 106 cells with 10% dead cells.
  8. For expansion of NSCs, plate 1.5 x 106 cells per 10 cm fibronectin-coated tissue culture dish in a volume of 8 ml expansion medium. For standard expansion, add 8 µl of 1,000x rhFGF2 stock. Add 8 µl rhFGF2 every day and change media every other day.
    Note: The cortex at this developmental stage contains a majority of NSCs and only a minority of differentiated cells. The differentiated minority cells do not respond to the rhFGF2-treatment and die during the expansion culture.
  9. Passage expanded NSCs at 60% confluence.
    1. To passage NSCs, remove expansion medium. Wash cells quickly three times with 5 ml passaging medium. Wait 2 - 4 min. Without Ca2+ and Mg2+ the cells slowly detach from the surface, rounding up. Verify detachment of cells under the phase microscope. Wait another few minutes, if needed, until visual detachment from surface is observed.
      Note: Single cells will completely detach, but most cells will still adhere to the dish surface. The duration needed for detachment is dependent on the duration of fibronectin coating. A short fibronectin coating (12 hr or less) results in faster cell detachment. For longer experiments (> 1 week) fibronectin coating of more than 24 hr is recommended.
  10. Use a 10 ml pipette to gently detach the cells from the surface. Collect the 5 ml passaging medium with cells and transfer it to a fresh 15 ml tube. Repeat with an additional 5 ml of passaging medium.
  11. Dissociate the cells in the 15 ml tube by pipetting up and down three times, placing the 10 ml pipet at the bottom of the tube. Spin the tube for 15 min at 1,200 x g at room temperature. Remove the supernatant and resuspend the pellet in 2 ml expansion medium. Count cells using a hemocytometer. Use trypan blue to assess dead cells.
    ​Note: After expansion to 60% confluence, expect 4 - 5 x 106 cells with a dead cell count at around 10%.
  12. Plate 8 x 105 cells per 10 cm dish for further passages.

8. Migration Assessment

  1. For migration assessment, isolate explants according to Section 5. Seed the explants in 35 mm grid dishes. One hour after plating, add FGF2 (rhFGF2). Place the dishes in a 37 °C incubator for 2 days.
    ​Note: For optimal explant attachment, avoid moving the dishes.
  2. Remove medium by 1,000 µl tip. Add 2 ml of expansion medium by 1,000 µl tip starting at the inner circle (Figure 3). This reduces surface tension on explants.
  3. Add growth factors alone or in combination as required for experiment. Use FGF2/BMP4/TGFβ1 as positive control. Note: In this experiment, 2 µl FGF2 per 35 mm dish, 2 µl BMP4 and 4 µl TGFβ1 were added alone and in combination (Figure 5).
    1. Add additional factors and/or testable substances. Keep dishes again untouched for 2 days at 37 °C.
  4. Take photographs of explants on an inverted microscope.
    Note: Living explants yield better phase contrast images than fixed cells. Both may be used.
  5. For migration assessment, use a graphics software that allows pixel measurements (e.g., Fiji8).
  6. Measure the dish grid of 500 µm distance in pixels and use it as internal reference.
  7. Define the center of the explant as migration start point. Measure the distance between the center of the explant and the outermost group of 10 cells.
    Note: All cells migrate centrifugally away from the explant. They spontaneously form a sheet at the periphery under the circumstances tested (Figure 5).

9. Invasion Assessment

  1. Prepare fibronectin-coated tissue culture 24-well plates according to Protocol Section 4.
  2. Place 300 µl of warm expansion medium into the top well of cell invasion chambers. Incubate the chambers for 30 min at 37 °C and 5% CO2.
  3. Remove the expansion medium from the top well and place the Boyden chamber into the coated 24-well plate.
  4. Add 500 µl of warm expansion medium with 0.5 µl of rhFGF2 and 0.5 µl rhBMP4 to the bottom well.
  5. Passage NSCs and count as described in Section 7. Passages 1 to 4 are suitable.
  6. Plate 5 x 105 cells in a volume of 300 µl of warm expansion medium with 0.3 µl of rhFGF2 and 0.3 µl of rhBMP4 in the top well of the Boyden chamber.
  7. Culture the seeded NSCs for 24 hr.
  8. Add additional factors and/or testable substances to the chamber and culture the cells for another 48 hr.
    Note: If the cells are invasive, they will pass from the top well through the basement membrane layer to the bottom well. Invasive cells will cling to the bottom of the Boyden chamber.
  9. Follow the protocol provided by the manufacturer. Use cotton swabs (included in the invasion assay kit) to remove the non-invasive cells in the top well by cleaning twice.
  10. Remove the medium from the wells and add 500 µl expansion medium with a plasma membrane stain for living cells and with the nuclear dye DAPI to the wells.
  11. Incubate for 10 min at 37 °C and 5% CO2.
    Note: The dyes will integrate into the membrane and the nucleus of the invasive cells, respectively, for optimal visualization8. Option: Omit plasma membrane dye if multicolor immunocytochemistry is planned.
  12. Remove the medium with the dyes and wash twice with expansion medium. Visualize and count invasive cells with an inverted fluorescence microscope as demonstrated previously8.
    Note: Some invasive cells may have detached from the bottom of the chamber and have dropped to the well surface below where they stick to the coated surface. For complete analysis include the cells at the well surface.
  13. Remove the medium and fix the cells in ice-cold fresh 4% PFA for 10 min. Wash 3x with 1x PBS. Perform immunocytochemistry on invasive cells, as previously described8-10.

Access restricted. Please log in or start a trial to view this content.

Results

This EMT model system is based on the standardized isolation of NSCs both as single cells or as explants from a specific region of the developing neural tube, the central cortex (Figures 1 and 2). For quantitative assessment, explants were seeded right at the center of a 500 µm grid culture dish (Figure 3). Explants from the central cortex were first exposed to FGF2 for two days, followed by additional two days in different combinati...

Access restricted. Please log in or start a trial to view this content.

Discussion

In this study a standardized system for EMT analysis utilizing NSCs is described (summarized in Supplementary Figure 3). The standardization ensures reproducibility (Table 1 and 2). The NSCs are derived from the developing cortex, a tissue that normally does not undergo EMT. This is of advantage for the analysis of early steps in EMT. Initial steps in EMT cannot be adequately studied in tumor cells that have accumulated genetic changes and may have already adopted EMT features. Moreover,...

Access restricted. Please log in or start a trial to view this content.

Disclosures

The authors declare that they have no competing financial interests.

Acknowledgements

The study was supported by the University of Basel Science Foundation and the Swiss National Science Foundation by a grant to MHS and AG (SNF IZLIZ3_157230). We thank: Dr. Tania Rinaldi Burkat for generously providing infrastructure; all members of the Bettler group for discussions and comments. We thank Gerhard Dorne (Leica Microsystems, Switzerland) for professional and competent installation of the Full HD MC170 video camera (Leica Microsystems, Switzerland).

Access restricted. Please log in or start a trial to view this content.

Materials

NameCompanyCatalog NumberComments
BMP4, rhBMP4RnD Systems 314-BP-01M
Bovine pancreas insulinSigma I1882
Boyden chamber, CytoSelect cell invasion assayCell BiolabsCBA-11024 well plate system
Cell culture dish with gridIbidi 500 mm dish, 35 mm80156
CellMask OrangeLife TechnologiesC10045Plasma membrane dye, use at 1:1,000.
DAPILifeTechnologiesD1306Stock at 5 mg/ml. Use at 1:10,000. Cancerogenic. Appropriate protection (gloves, coat, goggles) required.
DMEM/F12 1:1 medium bottleGibco Invitrogen21331-020
FGF2, rhFGF2RnD Systems233-FB-01M
Fibronectine, bovineSigma F4759
Glutamax supplement Gibco Invitrogen 35050-061
Graphics software with pixel measurement featureFijifiji.sc/Fijiversion 2.0.0-rc-30/1.49s
HBSS mediaSigma H9394
Human apo-TransferrinSigmaT1147Possible lung irritant. Avoid inhalation. Use appropriate protection.
L-glutamineGibco Invitrogen 25030-024
Nestin, Mouse anti Nestin antibodyGenetexGTX26142Use at 1:100, 4% PFA fixation, Triton X100 at 0.1%
Olig2, Rabbit anti Olig2 antibodyProvided by Hirohide TakebayashPersonal stockUse at 1:2,000, 4% PFA fixation, Triton X100 at 0.1%
Penicillin/Streptomycin/FungizoneGibco Invitrogen 15240-062
Podoplanin, Mouse anti Podoplanin antibodyAcrisDM3614PUse at 1:250, 4% PFA fixation, avoid Triton X100
Poly-L-ornithineSigma P3655
PutrescineSigma P5780Skin and eye irritant. Appropriate protection required.
Sodium seleniteSigma S5261
Sox10, Rabbit anti Sox10 antibodyMillipore ChemiconAB5774Use at 1:200, 4% PFA fixation, Triton X100 at 0.1%
TGFb1, rhTGFb1RnD Systems240-B-010
Uncoated Petri dishesFalcon Corning351029

References

  1. Nieto, M. A. Epithelial-Mesenchymal Transitions in development and disease: old views and new perspectives. Int J Dev Biol. 53, 1541-1547 (2009).
  2. Sauka-Spengler, T., Bronner-Fraser, M. A gene regulatory network orchestrates neural crest formation. Nat Rev Mol Cell Biol. 9, 557-568 (2008).
  3. Barriere, G., Fici, P., Gallerani, G., Rigaud, M. Mesenchymal Transition: a double-edged sword. Clin Transl Med. 4, 14(2015).
  4. Zawadzka, M., et al. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell. 6, 578-590 (2010).
  5. Paxinos, G., Ashwell, K. W. S., Törk, I. Atlas of the developing rat nervous system. , 2nd edn, Academic Press. (1994).
  6. O'Leary, D. D., Chou, S. J., Sahara, S. Area patterning of the mammalian cortex. Neuron. 56, 252-269 (2007).
  7. O'Leary, D. D., Sahara, S. Genetic regulation of arealization of the neocortex. Curr Opin Neurobiol. 18, 90-100 (2008).
  8. Sailer, M. H., et al. Non-invasive neural stem cells become invasive in vitro by combined FGF2 and BMP4 signaling. J Cell Sci. 126, 3533-3540 (2013).
  9. Sailer, M. H., et al. BMP2 and FGF2 cooperate to induce neural-crest-like fates from fetal and adult CNS stem cells. J Cell Sci. 118, 5849-5860 (2005).
  10. Sailer, M., Oppitz, M., Drews, U. Induction of cellular contractions in the human melanoma cell line SK-mel 28 after muscarinic cholinergic stimulation. Anat Embryol (Berl). 201, 27-37 (2000).
  11. Wicki, A., Christofori, G. The potential role of podoplanin in tumour invasion. Br J Cancer. 96, 1-5 (2007).
  12. Wicki, A., et al. Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell. 9, 261-272 (2006).
  13. Mishima, K., et al. Increased expression of podoplanin in malignant astrocytic tumors as a novel molecular marker of malignant progression. Acta Neuropathol. 111, 483-488 (2006).
  14. Motomura, K., et al. Immunohistochemical analysis-based proteomic subclassification of newly diagnosed glioblastomas. Cancer Science. 103, 1871-1879 (2012).
  15. Kono, T., et al. Immunohistochemical detection of the lymphatic marker podoplanin in diverse types of human cancer cells using a novel antibody. Int J Oncol. 31, 501-508 (2007).
  16. Raica, M., Cimpean, A. M., Ribatti, D. The role of podoplanin in tumor progression and metastasis. Anticancer Res. 28, 2997-3006 (2008).
  17. Panchision, D. M., McKay, R. D. The control of neural stem cells by morphogenic signals. Curr Opin Genet Dev. 12, 478-487 (2002).
  18. Lamouille, S., Xu, J., Derynck, R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 15, 178-196 (2014).
  19. Gonzalez-Perez, O., Alvarez-Buylla, A. Oligodendrogenesis in the subventricular zone and the role of epidermal growth factor. Brain Res Rev. 67, 147-156 (2011).
  20. Hu, J. G., et al. PDGF-AA mediates B104CM-induced oligodendrocyte precursor cell differentiation of embryonic neural stem cells through Erk, PI3K, and p38 signaling. J Mol Neurosci. 46, 644-653 (2012).
  21. Galvao, R. P., et al. Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process. Proc Natl Acad Sci U S A. 111, E4214-E4223 (2014).
  22. Liu, C., et al. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell. 146, 209-221 (2011).
  23. Das, S., Srikanth, M., Kessler, J. A. Cancer stem cells and glioma. Nat Clin Pract Neurol. 4, 427-435 (2008).
  24. Modrek, A. S., Bayin, N. S., Placantonakis, D. G. Brain stem cells as the cell of origin in glioma. World J Stem Cells. 6, 43-52 (2014).
  25. Sampetrean, O., et al. Invasion precedes tumor mass formation in a malignant brain tumor model of genetically modified neural stem cells. Neoplasia. 13, 784-791 (2011).
  26. McNeill, R. S., et al. Modeling astrocytoma pathogenesis in vitro and in vivo using cortical astrocytes or neural stem cells from conditional, genetically engineered mice. JoVE. , e51763(2014).
  27. Lara-Padilla, E., Caceres-Cortes, J. R. On the nature of the tumor-initiating cell. Curr Stem Cell Res Ther. 7, 26-35 (2012).
  28. Busch, C., et al. BMP-2-dependent integration of adult mouse subventricular stem cells into the neural crest of chick and quail embryos. J Cell Sci. 119, 4467-4474 (2006).
  29. Thiery, J. P., Acloque, H., Huang, R. Y., Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell. 139, 871-890 (2009).
  30. McDonald, O. G., Wu, H., Timp, W., Doi, A., Feinberg, A. P. Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat Struct Mol Biol. 18, 867-874 (2011).
  31. Rahimi, R. A., Leof, E. B. TGF-beta signaling: a tale of two responses. J Cell Biochem. 102, 593-608 (2007).
  32. Xu, J., Lamouille, S., Derynck, R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 19, 156-172 (2009).
  33. Suva, M. L., Riggi, N., Bernstein, B. E. Epigenetic reprogramming in cancer. Science. 339, 1567-1570 (2013).
  34. Sullivan, R., et al. A possible new focus for stroke treatment - migrating stem cells. Expert Opin Biol Ther. , 1-10 (2015).

Access restricted. Please log in or start a trial to view this content.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Neural Stem CellEMTCell MigrationInvasionDrug DiscoveryEpithelial To Mesenchymal TransitionRat EmbryosTelencephalonDiencephalonMesencephalonGanglionic Eminences

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved