JoVE Logo
Faculty Resource Center

Sign In





Representative Results






The Evolution of Silica Nanoparticle-polyester Coatings on Surfaces Exposed to Sunlight

Published: October 11th, 2016



1School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, 2BlueScope Steel Research, 3Infrared Microspectroscopy Beamline, Australian Synchrotron, 4School of Science, College of Science, Engineering and Health, RMIT University

Two types of surfaces, polyester-coated steel and polyester coated with a layer of silica nanoparticles, were studied. Both surfaces were exposed to sunlight, which was found to cause substantial changes in the chemistry and nanoscale topography of the surface.

Corrosion of metallic surfaces is prevalent in the environment and is of great concern in many areas, including the military, transport, aviation, building and food industries, amongst others. Polyester and coatings containing both polyester and silica nanoparticles (SiO2NPs) have been widely used to protect steel substrata from corrosion. In this study, we utilized X-ray photoelectron spectroscopy, attenuated total reflection infrared micro-spectroscopy, water contact angle measurements, optical profiling and atomic force microscopy to provide an insight into how exposure to sunlight can cause changes in the micro- and nanoscale integrity of the coatings. No significant change in surface micro-topography was detected using optical profilometry, however, statistically significant nanoscale changes to the surface were detected using atomic force microscopy. Analysis of the X-ray photoelectron spectroscopy and attenuated total reflection infrared micro-spectroscopy data revealed that degradation of the ester groups had occurred through exposure to ultraviolet light to form COO·, -H2C·, -O·, -CO· radicals. During the degradation process, CO and CO2 were also produced.

Environmental corrosion of metals in the environment is both prevalent and costly1-3. A recent study conducted by the Australasian Corrosion Association (ACA) reported that corrosion of metals resulted in a yearly cost of $982 million, which was directly associated with the degradation of assets and infrastructure through metallic corrosion within the water industry4. From an international perspective, the World Corrosion Organization estimated that metallic corrosion was responsible for a direct cost of $3.3 trillion, over 3% of the world's GDP5. The process of galvanizing as a corrosion preventative method has been widely used to inc....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Steel Samples

  1. Obtain steel samples of 1 mm thickness from a commercial supplier.
    NOTE: Samples were coated with either polyester or polyester coated with silica nanoparticles.
  2. Expose samples to sunlight at Rockhampton, Queensland, Australia: collect samples after one-year and five-year intervals over a total 5-year period. Cut sample panels into round discs of 1 cm diameter using hole puncher.
  3. Prior to surface characterization, rinse samples with double-distilled.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The coated steel samples that had been subjected to exposure to the sunlight for either one or five years were collected, and water contact angle measurements were carried out to determine whether the exposure had resulted in a change in the surface hydrophobicity of the surface (Figure 2).

Figure 2
Figure 2. Wettability variation of surfaces with polyester or silica nanopa.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Polyester coatings have been widely used to protect steel substrata from the corrosion that would occur on an uncoated surface due to the accumulation of moisture and pollutants. The application of polyester coatings can protect the steel from corrosion; however the longer-term effectiveness of these coatings is compromised if they are exposed to high levels of ultraviolet light under humid conditions, as occurs in tropical climates. Silica nanoparticles can be applied to the surface of the polyester to improve the robus.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Funding from the Australian Research Council Industrial Transformation Research Hubs Scheme (Project Number IH130100017) is gratefully acknowledged. Authors gratefully acknowledge the RMIT Microscopy and Microanalysis Facility (RMMF) for providing access to the characterisation instruments. This research was also undertaken on the Infrared Microscopectroscopy beamline at the Australian Synchrotron, Victoria, Australia.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
polyester-coated steel
silica nanoparticle-polyester coated steel substrata
BlueScope Steel Samples provided by company
Millipore PetriSlideTM  Fisher Scientific PDMA04700 Storing samples
Thermo ScientificTM K-alpha
X-ray Photoelectron Spectrometer
Thermo Fisher Scientific, Inc. IQLAADGAAFFACVMAHV Acquire XPS spectra
Avantage Data System Thermo Fisher Scientific, Inc. IQLAADGACKFAKRMAVI Analyse XPS spectra
A Bruker Hyperion 2000 microscope  Bruker Corporation Synchrotron integrated instrument
Bruker Opus v. 7.2 Bruker Corporation ATR-IR analysis software
Contact angle goniometer, FTA1000c First Ten Ångstroms Inc., VA, USA Measuring the wettability of surfaces
FTA v. 2.0 First Ten Ångstroms Inc., VA, USA Anaylyzing water contact angle
Optical profiler, Wyko NT1100  Bruker Corporation Measure surface topography
Innova atomic force microscope  Bruker Corporation Measure surface topography
Phosphorus doped silicon probes, MPP-31120-10 Bruker Corporation AFM probes
Gwyddion software Software used to measure optical profiling and AFM data

  1. Fathima Sabirneeza, A. A., Geethanjali, R., Subhashini, S. Polymeric corrosion inhibitors for iron and its alloys: A review. Chem. Eng. Commun. 202 (2), 232-244 (2015).
  2. Gupta, R. K., Birbilis, N. The influence of nanocrystalline structure and processing route on corrosion of stainless steel: A review. Corros. Sci. 92, 1-15 (2015).
  3. Lee, H. S., Ismail, M. A., Choe, H. B. Arc thermal metal spray for the protection of steel structures: An overview. Corros. Rev. 33 (1-2), 31-61 (2015).
  4. Moore, G. . Corrosion challenges - urban water industry. , (2010).
  5. Hays, G. F. . World Corrosion Organization. , (2013).
  6. Koch, G. H., Brongers, M. P. H., Thompson, N. G., Virmani, P. Y., Payer, J. H. Corrosion cost and preventive strategies in the United States. CC Technologies Laboratories, Incorporated; NACE International; Federal Highway Administration, NACE International. , (2002).
  7. Pojtanabuntoeng, T., Singer, M., Nesic, S. . Corrosion 2011. , (2011).
  8. Jas̈niok, T., Jas̈niok, M., Tracz, T., Hager, I. . 7th Scientific-Technical Conference on Material Problems in Civil Engineering, MATBUD 2015. , 316-323 (2015).
  9. Cambier, S. M., Posner, R., Frankel, G. S. Coating and interface degradation of coated steel, Part 1: Field exposure. Electrochim. Acta. 133, 30-39 (2014).
  10. Barletta, M., Gisario, A., Puopolo, M., Vesco, S. Scratch, wear and corrosion resistant organic inorganic hybrid materials for metals protection and barrier. Mater. Des. 69, 130-140 (2015).
  11. Fu, J., et al. Experimental and theoretical study on the inhibition performances of quinoxaline and its derivatives for the corrosion of mild steel in hydrochloric acid. Ind. Eng. Chem. Res. 51 (18), 6377-6386 (2012).
  12. Hattori, M., Nishikata, A., Tsuru, T. EIS study on degradation of polymer-coated steel under ultraviolet radiation. Corros. Sci. 52 (6), 2080-2087 (2010).
  13. Yang, X. F., et al. Weathering degradation of a polyurethane coating. Polym. Degrad. Stab. 74 (2), 341-351 (2001).
  14. Armstrong, R. D., Jenkins, A. T. A., Johnson, B. W. An investigation into the uv breakdown of thermoset polyester coatings using impedance spectroscopy. Corros. Sci. 37 (10), 1615-1625 (1995).
  15. Zhou, W., Liu, M., Chen, N., Sun, X. Corrosion properties of sol-gel silica coatings on phosphated carbon steel in sodium chloride solution. J. Sol. Gel. Sci. Technol. 76 (2), 358-371 (2015).
  16. Hollamby, M. J., et al. Hybrid polyester coating incorporating functionalized mesoporous carriers for the holistic protection of steel surfaces. Adv. Mater. 23 (11), 1361-1365 (2011).
  17. Borisova, D., Möhwald, H., Shchukin, D. G. Mesoporous silica nanoparticles for active corrosion protection. ACS Nano. 5 (3), 1939-1946 (2011).
  18. Wang, M., Liu, M., Fu, J. An intelligent anticorrosion coating based on pH-responsive smart nanocontainers fabricated via a facile method for protection of carbon steel. J. Mater. Chem. A. 3 (12), 6423-6431 (2015).
  19. Truong, V. K., et al. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials. 31 (13), 3674-3683 (2010).
  20. Nečas, D., Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 10 (1), 181-188 (2012).
  21. Crawford, R. J., Webb, H. K., Truong, V. K., Hasan, J., Ivanova, E. P. Surface topographical factors influencing bacterial attachment. Adv. Colloid Interface Sci. 179-182, 142-149 (2012).
  22. Allen, N. S., Edge, M., Mohammadian, M., Jones, K. Physicochemical aspects of the environmental degradation of poly(ethylene terephthalate). Polym. Degrad. Stab. 43 (2), 229-237 (1994).
  23. Newman, C. R., Forciniti, D. Modeling the ultraviolet photodegradation of rigid polyurethane foams. Ind. Eng. Chem. Res. 40 (15), 3346-3352 (2001).
  24. Ivanova, E. P., et al. Vibrio fischeri and Escherichia coli adhesion tendencies towards photolithographically modified nanosmooth poly (tert-butyl methacrylate) polymer surfaces. Nanotechnol. Sci. Appl. 1, 33-44 (2008).
  25. Biggs, S., Lukey, C. A., Spinks, G. M., Yau, S. T. An atomic force microscopy study of weathering of polyester/melamine paint surfaces. Prog. Org. Coat. 42 (1-2), 49-58 (2001).
  26. Signor, A. W., VanLandingham, M. R., Chin, J. W. Effects of ultraviolet radiation exposure on vinyl ester resins: Characterization of chemical, physical and mechanical damage. Polym. Degrad. Stab. 79 (2), 359-368 (2003).
  27. Wang, H., et al. Corrosion-resistance, robust and wear-durable highly amphiphobic polymer based composite coating via a simple spraying approach. Prog. Org. Coat. 82, 74-80 (2015).
  28. Liszka, B. M., Lenferink, A. T. M., Witkamp, G. J., Otto, C. Raman micro-spectroscopy for quantitative thickness measurement of nanometer thin polymer films. J. Raman Spectrosc. 46 (12), 1230-1234 (2015).
  29. Alghunaim, A., Kirdponpattara, S., Newby, B. M. Z. Techniques for determining contact angle and wettability of powders. Powder Technol. 287, 201-215 (2016).
  30. Treviño, M., et al. Erosive wear of plasma electrolytic oxidation layers on aluminium alloy 6061. Wear. 301 (1-2), 434-441 (2013).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved