JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Environment

Potentiodynamic Corrosion Testing

Published: September 4th, 2016

DOI:

10.3791/54351

1Surgical and Orthopaedics Research Laboratories, Prince of Wales Clinical School

Here, we present a protocol to set up and run an in vitro potentiodynamic corrosion system to analyze pitting corrosion for small metallic medical devices.

Different metallic materials have different polarization characteristics as dictated by the open circuit potential, breakdown potential, and passivation potential of the material. The detection of these electrochemical parameters identifies the corrosion factors of a material. A reliable and well-functioning corrosion system is required to achieve this.

Corrosion of the samples was achieved via a potentiodynamic polarization technique employing a three-electrode configuration, consisting of reference, counter, and working electrodes. Prior to commencement a baseline potential is obtained. Following the stabilization of the corrosion potential (Ecorr), the applied potential is ramped at a slow rate in the positive direction relative to the reference electrode. The working electrode was a stainless steel screw. The reference electrode was a standard Ag/AgCl. The counter electrode used was a platinum mesh. Having a reliable and well-functioning in vitro corrosion system to test biomaterials provides an in-expensive technique that allows for the systematic characterization of the material by determining the breakdown potential, to further understand the material's response to corrosion. The goal of the protocol is to set up and run an in vitro potentiodynamic corrosion system to analyze pitting corrosion for small metallic medical devices.

Electrochemical techniques provide a quick and relatively inexpensive method to obtain the electrochemical properties of a material. These techniques are based predominately on the ability to detect corrosion of a metal by observing the response of the charge-transfer process to a controlled electrochemical disturbance 1-5. Corrosion of metal implants within a body environment is critical due to the adverse implications on biocompatibility and material integrity 6. The main factor contributing to corrosion of implants within the body is the dissolution of the surface oxide leading to an increased release of metallic ions 7-11. This res....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

1. Construction of the Sample Holder

  1. Construct the sample holder from stainless steel spacers and a M3 stainless steel threaded screw, held in place with a M3 hexagonal nut.
  2. Remove the head of the threaded screw using pliers and polish the cut segment to maintain the thread pattern.
  3. When all individual components are ready, assemble the electrode holders. Each electrode holder contains three spacers joined together by the M3 screws resulting in an 11.5 cm handle. Place the hexagonal nuts a.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

At the conclusion of the procedure an in vitro corrosion system is setup to conduct corrosion studies. Specific procedures such as the cleaning of the corrosion vessel and the Faraday cage were introduced into the protocol to improve noise performance. The fundamental concept of a good polarization scan is to identify the electro-physical conditions of the material providing valuable information in order to understand the corrosion susceptibility of a metallic material. The proce.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Polarization scans produced from the stainless steel samples showed clean continuous plots correlating with scans seen in literature indicative of a well functioning corrosion system which is both reliable and reproducible 29. Poor reproducibility of potentiodynamic pitting potentials is identified with a spread of a few hundred millivolts, with pitting potential being characterized by a stochastic process 29. This is commonly due to the variables of temperature, halide content and potential (V); th.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The authors had no funding provided for this study.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
Potentiostat Metrohm PGSTAT101
Ag/AgCl reference electrode, shielded Metrohm 6.0729.100
Electrode shaft Metrohm 6.1241.060
Polisher Forcipol 1v Metkon 3602
Clindrical flask 700mL SciLabware FR700F
Reaction lid SciLabware MAF2/41
Dichloromethane Sigma-Aldrich MKBR7629V use under a fumehood. Wear protective clothing
Thermo / HAAKE D Series Immersion Circulators Haake

  1. Isaacs, H. S. Aspects of corrosion from the ECS Publications. J. Electrochem. Soc. 149 (12), 85-87 (2002).
  2. Fontana, M. G., Greene, N. D. . Corrosion Engineering. , (1978).
  3. Pourbaix, M. Electrochemical corrosion of metallic biomaterials. Biomaterials. 5 (3), 122-134 (1984).
  4. Rechnitz, G. A. . Controlled-Potential Analysis. , (1963).
  5. Silverman, D. C., Revie, R. W. Chapter 68. Uhlig's Corrosion Handbook. , (2000).
  6. Gurappa, I. Characterization of different materials for corrosion resistance under simulated body fluid conditions. Mater Charact. 49 (1), 73-79 (2002).
  7. Antoniou, J., et al. Metal ion levels in the blood of patients after hip resurfacing: a comparison between twenty-eight and thirty-six-millimeter-head metal-on-metal prostheses. J Bone Joint Surg Am. 90, 142-148 (2008).
  8. Billi, F., Campbell, P. Nanotoxicology of metal wear particles in total joint arthroplasty: a review of current concepts. J Appl Biomater Funct Mater. 8 (1), 1-6 (2010).
  9. Bradberry, S. M., Wilkinson, J. M., Ferner, R. E. Systemic toxicity related to metal hip prostheses. Clin Toxicol (Phila). 52 (8), 837-847 (2014).
  10. Davda, K., Lali, F. V., Sampson, B., Skinner, J. A., Hart, A. J. An analysis of metal ion levels in the joint fluid of symptomatic patients with metal-on-metal hip replacements. J Bone Joint Surg Br. 93 (6), 738-745 (2011).
  11. Clarke, M. T., Lee, P. T., Arora, A., Villar, R. N. Levels of metal ions after small and large diameter metal-on-metal hip arthroplasty. J Bone Joint Surg Br. 85 (6), 913-917 (2003).
  12. Brown, S. A., Hughes, P. J., Merritt, K. In vitro studies of fretting corrosion of orthopaedic materials. J Orthop Res. 6 (4), 572-579 (1988).
  13. Bryant, M., et al. Characterisation of the surface topography, tomography and chemistry of fretting corrosion product found on retrieved polished femoral stems. J Mech Behav Biomed Mater. 32, 321-334 (2014).
  14. Jantzen, C., Jørgensen, H. L., Duus, B. R., Sporring, S. L., Lauritzen, J. B. Chromium and cobalt ion concentrations in blood and serum following various types of metal-on-metal hip arthroplasties. A literature review. Acta Orthopaedica. 84 (3), 229-236 (2013).
  15. Campbell, P., et al. Histological Features of Pseudotumor-like Tissues From Metal-on-Metal Hips. Clin. Orthop. Relat. Res. 468 (9), 2321-2327 (2010).
  16. Cook, S. D., et al. The in vivo performance of 250 internal fixation devices: a follow-up study. Biomaterials. 8 (3), 177-184 (1987).
  17. Cooper, H. J., Urban, R. M., Wixson, R. L., Meneghini, R. M., Jacobs, J. J. Adverse local tissue reaction arising from corrosion at the femoral neck-body junction in a dual-taper stem with a cobalt-chromium modular neck. J Bone Joint Surg Am. 95 (10), 865-872 (2013).
  18. Langton, D. J., Sprowson, A. P., Joyce, T. J., Reed, M., Carluke, I., Partington, P., Nargol, A. V. Blood metal ion concentrations after hip resurfacing arthroplasty. J Bone Joint Surg Br. 91 (10), 1287-1295 (2009).
  19. Langton, D. J., Jameson, S. S., Joyce, T. J., Webb, J., Nargol, A. V. The effect of component size and orientation on the concentrations of metal ions after resurfacing arthroplasty of the hip. J Bone Joint Surg Br. 90 (9), 1143-1151 (2008).
  20. Daniel, J., Ziaee, H., Pradhan, C., McMinn, D. J. Six-year results of a prospective study of metal ion levels in young patients with metal-on-metal hip resurfacings. J Bone Joint Surg Br. 91 (2), 176-179 (2009).
  21. De Haan, R., et al. Correlation between inclination of the acetabular component and metal ion levels in metal-on-metal hip resurfacing replacement. J Bone Joint Surg Br. 90 (10), 1291-1297 (2008).
  22. Dijkman, M. A., de Vries, I., Mulder-Spijkerboer, H., Meulenbelt, J. Cobalt poisoning due to metal-on-metal hip implants. Ned Tijdschr Geneeskd. 156 (42), A4983 (2012).
  23. Fisher, J. Bioengineering reasons for the failure of metal-on-metal hip prostheses: an engineer's perspective. J Bone Joint Surg Br. 93 (8), 1001-1004 (2011).
  24. Goldberg, J. R., et al. A Multicenter Retrieval Study of the Taper Interfaces of Modular Hip Prostheses. Clin. Orthop. Relat. Res. (401), 149-161 (2002).
  25. Ingham, E., Fisher, J. Biological reactions to wear debris in total joint replacement. Proc Inst Mech Eng H. 214 (1), 21-37 (2000).
  26. Gilbert, J. L., Buckley, C. A., Jacobs, J. J., Res, J. .. B. i. o. m. e. d. .. M. a. t. e. r. .. In vivo corrosion of modular hip prosthesis components in mixed and similar metal combinations. The effect of crevice, stress, motion and allot coupling. J. Biomed. Mater. Res. 76 (1), 1533-1544 (1993).
  27. Browne, J. A., Bechtold, C. D., Berry, D. J., Hanssen, A. D., Lewallen, D. G. Failed metal-on-metal hip arthroplasties: a spectrum of clinical presentations and operative findings. Clin. Orthop. Relat. Res. 468 (9), 2313-2320 (2010).
  28. Jantzen, C., Jorgensen, H. L., Duus, B. R., Sporring, S. L., Lauritzen, J. B. Chromium and cobalt ion concentrations in blood and serum following various types of metal-on-metal hip arthroplasties: a literature overview. Acta Orthop. 84 (3), 229-236 (2013).
  29. Frangini, S., De Cristofaro, N. Analysis of galvanostatic polarisation method for determining reliable pitting potentials on stainless steels in crevice-free conditions. Corros Sci. 45 (12), 2769-2786 (2002).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved