A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
* These authors contributed equally
The interaction between HCN channels and their auxiliary subunit has been identified as a therapeutic target in Major Depressive Disorder. Here, a fluorescence polarization-based method for identifying small molecule inhibitors of this protein-protein interaction, is presented.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed ubiquitously throughout the brain, where they function to regulate the excitability of neurons. The subcellular distribution of these channels in pyramidal neurons of hippocampal area CA1 is regulated by tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b), an auxiliary subunit. Genetic knockout of HCN pore forming subunits or TRIP8b, both lead to an increase in antidepressant-like behavior, suggesting that limiting the function of HCN channels may be useful as a treatment for Major Depressive Disorder (MDD). Despite significant therapeutic interest, HCN channels are also expressed in the heart, where they regulate rhythmicity. To circumvent off-target issues associated with blocking cardiac HCN channels, our lab has recently proposed targeting the protein-protein interaction between HCN and TRIP8b in order to specifically disrupt HCN channel function in the brain. TRIP8b binds to HCN pore forming subunits at two distinct interaction sites, although here the focus is on the interaction between the tetratricopeptide repeat (TPR) domains of TRIP8b and the C terminal tail of HCN1. In this protocol, an expanded description of a method for purifying TRIP8b and executing a high throughput screen to identify small molecule inhibitors of the interaction between HCN and TRIP8b, is described. The method for high throughput screening utilizes a Fluorescence Polarization (FP) -based assay to monitor the binding of a large TRIP8b fragment to a fluorophore-tagged eleven amino acid peptide corresponding to the HCN1 C terminal tail. This method allows 'hit' compounds to be identified based on the change in the polarization of emitted light. Validation assays are then performed to ensure that 'hit' compounds are not artifactual.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed in the heart and central nervous system where they play an important role in regulating membrane excitability1. HCN channels have been implicated in the pathogenesis of Major Depressive Disorder (MDD)2, which has led several groups to propose that limiting HCN channel function pharmacologically may be effective as a novel treatment for MDD3. However, directly targeting HCN channels is not viable because of their important role in the cardiac action potential4. Ivabradine, the only FDA approved HCN channel antagonist, is used for the treatment of heart failure to produce a bradycardic effect5. As such, there is a need for pharmacologic agents that limit HCN channel function exclusively in the central nervous system.
Tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b) is a brain specific auxiliary subunit of HCN channels that controls the surface expression and localization of HCN channels6,7. Genetic knockout of TRIP8b causes a reduction of brain HCN channels7 without affecting HCN expression in the heart8. Interestingly, TRIP8b knockout mice spend less time immobile on the forced swim task and tail suspension task7, two commonly used screening tests for antidepressant efficacy9-11. These results suggest that rather than directly targeting HCN channels with a small molecule antagonist of HCN channel function, disrupting the interaction between TRIP8b and HCN may be sufficient to produce antidepressant-like behavior.
TRIP8b binds to HCN at two distinct binding sites. The cyclic nucleotide binding domain (CNBD) of HCN interacts with a conserved domain of TRIP8b located N terminal to the TPR domains of TRIP8b12,13. Although the residues of the CNBD that are involved in this interaction have been mapped14, the region of TRIP8b that is involved has not been narrowed down beyond an-80-amino acid fragment13. A second interaction occurs between the tetratricopeptide repeat (TPR) domains of TRIP8b and the C terminal tripeptide of HCN ('SNL' in HCN1, HCN2, and HCN4, but 'ANM' in HCN3)3,12. The recently solved crystal structure15 of this C tail interaction revealed substantial structural similarity to the interaction between the peroxisomal import receptor, peroxin 5 (PEX5), and its interacting partners, containing type 1 peroxisomal targeting sequences (PTS1)16.
Although both interaction sites are required for HCN channel function, the interaction between the TPR domains of TRIP8b and the C terminal tripeptide of HCN1 serves as the dominant binding site and regulates HCN surface expression. Therefore, this interaction was chosen as the targeting site in this study. For the remainder of the manuscript, when a reference is made to the interaction between TRIP8b and HCN, it is this interaction that is being referred to. This interaction is recapitulated by a highly soluble fragment of TRIP8b corresponding to its conserved C terminal containing the TPR domains required for binding the C terminal tail of HCN (residues 241-602 of the 1a-4 isoforms of TRIP8b)3.
In order to develop a high throughput screen to identify small molecules capable of disrupting this interaction, a fluorescence polarization (FP)-based assay was employed17. Fluorescence polarization is based on the excitation of a fluorophore-tagged ligand with polarized light, and measuring the degree of polarization of the emitted fluorescence18. In the presence of a binding partner, the rotational motion of the fluorescent ligand is constrained and polarized light is emitted19. In the absence of a binding partner, the rotational motion of the ligand leads to the emission of depolarized light.
In the enclosed protocol, a method for the purification of N terminal-tagged (6xHis) TRIP8b (241-602) using Nickel-Nitrilotriacetic acid (Ni-NTA) beads is presented. A similar protocol was employed to purify the Glutathione-S-Transferase (GST)-tagged C terminal 40 amino acids of HCN1 (HCN1c40) used in step 7 of the protocol. For space considerations, a detailed description of that procedure was omitted.
In steps 2 through 7 of the protocol, a high throughput screening workflow is presented (see Figure 1). Protein-protein interactions are a notoriously difficult target for high throughput screening and readers are advised to seek out additional resources on the topic20.
Steps 2 and 3 of the procedure characterize the in vitro affinity of the purified TRIP8b (241-602) construct for a fluorescein isothiocyanate (FITC)-tagged eleven amino acid peptide corresponding to the C terminal tail of HCN1 (HCN1FITC). Based on the crystal structure of the TRIP8b-HCN complex15, this eleven amino acid segment is sufficient to produce binding with TRIP8b (241-602). In step 2, the Kd of the interaction is measured by titrating TRIP8b (241-602) into a fixed concentration of HCN1FITC. In step 3, an unlabeled version of the HCN peptide used in step 2 is titrated into a fixed concentration of both TRIP8b (241-602) and HCN1FITC to examine if the FITC tag interferes with binding. These experiments are essential to selecting the appropriate concentrations of TRIP8b (241-602) and HCN1FITC used in the high throughput screen.
The premise of the high throughput screen is that a small molecule capable of disrupting the interaction between TRIP8b (241-602) and HCN1FITC will produce a decrease in polarized light. In step 4, the Z factor of the assay is calculated21 for a given concentration of TRIP8b (241-602) and HCN1FITC to ensure that the assay is appropriate for high throughput screening (step 5). Steps 6 and 7 are validation assays to confirm that the hits identified in the primary high throughput screen are acting by disrupting the interaction between TRIP8b (241-602) and HCN1FITC rather than through a nonspecific mechanism. In step 6, carboxytetramethylrhodamine (TAMRA)-labeled HCN1 peptide (HCN1TAMRA) is used in an otherwise identical fluorescence polarization assay to filter fluorescent compounds that compromise the FP assay using the FITC tag. Step 7 utilizes a larger HCN1 C terminal fragment (HCN1C40) and employs a bead-based proximity assay, which is based on the 'tunneling' of a singlet oxygen from a donor bead to an acceptor bead brought close to one another by interacting proteins22.
1. Purification of TRIP8b (241-602) Protein
2. Small Scale Fluorescence Polarization Assay to Characterize the Interaction of the Two Protein Fragments
3. Examine the Protein-protein Interaction Using a Positive Control
4. Evaluate Assay Performance (Calculate Z Factor)
5. High Throughput Screen
6. Confirmation of Hits Using TAMRA-tagged HCN Peptide
7. Dose-response Validation of Bead-based Proximity Assay
To avoid copyright issues with our previous publication, a TAMRA-tagged probe HCN1TAMRA was used to generate Figures 2 and 3. Note that this substitution did not make an appreciable difference in the results, and the protocols are identical to those outlined above with HCN1FITC. To assess the interaction with HCN1TAMRA, TRIP8b (241-602) was titrated into a fixed concentration of HCN1TAMRA using the protocol outl...
Because of its potential as a therapeutic target in MDD24, there has been considerable interest in pharmacological approaches that antagonize HCN channel function in the central nervous system4. However, these efforts have been stalled by the important role of HCN channels in cardiac pacemaking and the risk of arrhythmia25. We reasoned that disrupting the interaction between HCN and its brain specific auxiliary subunit, TRIP8b8, might be sufficient to produce antidepressant-lik...
The authors have nothing to disclose.
This work was supported by National Institutes of Health Grant R21MH104471 and R01MH106511 (D.M.C.), Brain Research Foundation SG 2012-01 (D.M.C.), Northwestern University Clinical and Translational Sciences Institute 8UL1TR000150 (Y.H.), Chicago Biomedical Consortium HTS-004 (Y.H. and D.M.C.), and National Institutes of Health Grant 2T32MH067564 (K.L.). A part of this work was performed by the Northwestern University Medicinal and Synthetic Chemistry Core (ChemCore) at the Center for Molecular Innovation and Drug Discovery (CMIDD), which is funded by the Chicago Biomedical Consortium with support from the Searle Funds at the Chicago Community Trust and Cancer Center Support Grant P30 CA060553 from the National Cancer Institute awarded to the Robert H. Lurie Comprehensive Cancer Center. The high throughput screen work was performed in the High Throughput Analysis Laboratory which is also a core facility of the Robert H. Lurie Comprehensive Cancer Center.
Name | Company | Catalog Number | Comments |
Ni-NTA agarose | Qiagen | 30210 | |
Dialysis cassette | ThermoFisher | 66456 | |
Isopropyl b-D-1-thiogalactopyranoside | Sigma-Aldrich | I5502 - 1 gr | |
384-Well Black plate | Corning | 3820 | |
Proxiplate | Perkin-Elmer | 6008289 | |
Anti-GST Acceptor beads | Perkin-Elmer | 6760603C | |
NiChelate | Perkin-Elmer | AS101D | |
pGS21-a | Genscript | SD0121 | |
PMSF | Sigma-Aldrich | 10837091001 | |
Coomassie Kit | ThermoFisher | 23200 | |
Protein concentrator | ThermoFisher | 88527 | |
Perkin Elmer Enspire Multimode Plate reader | Perkin-Elmer | #2300-001M | |
BL21 (DE3) Competent Cells | Agilent | 200131 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved