JoVE Logo
Faculty Resource Center

Sign In

Abstract

Biochemistry

Method for Identifying Small Molecule Inhibitors of the Protein-protein Interaction Between HCN1 and TRIP8b

Published: November 11th, 2016

DOI:

10.3791/54540

1Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, 2Center for Molecular Innovation and Drug Discovery, Northwestern University, 3Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 4High Throughput Analysis Laboratory, Department of Molecular Biosciences, Northwestern University, 5Department of Physiology, Feinberg School of Medicine, Northwestern University
* These authors contributed equally

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed ubiquitously throughout the brain, where they function to regulate the excitability of neurons. The subcellular distribution of these channels in pyramidal neurons of hippocampal area CA1 is regulated by tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b), an auxiliary subunit. Genetic knockout of HCN pore forming subunits or TRIP8b, both lead to an increase in antidepressant-like behavior, suggesting that limiting the function of HCN channels may be useful as a treatment for Major Depressive Disorder (MDD). Despite significant therapeutic interest, HCN channels are also expressed in the heart, where they regulate rhythmicity. To circumvent off-target issues associated with blocking cardiac HCN channels, our lab has recently proposed targeting the protein-protein interaction between HCN and TRIP8b in order to specifically disrupt HCN channel function in the brain. TRIP8b binds to HCN pore forming subunits at two distinct interaction sites, although here the focus is on the interaction between the tetratricopeptide repeat (TPR) domains of TRIP8b and the C terminal tail of HCN1. In this protocol, an expanded description of a method for purifying TRIP8b and executing a high throughput screen to identify small molecule inhibitors of the interaction between HCN and TRIP8b, is described. The method for high throughput screening utilizes a Fluorescence Polarization (FP) -based assay to monitor the binding of a large TRIP8b fragment to a fluorophore-tagged eleven amino acid peptide corresponding to the HCN1 C terminal tail. This method allows 'hit' compounds to be identified based on the change in the polarization of emitted light. Validation assays are then performed to ensure that 'hit' compounds are not artifactual.

Tags

Keywords Small Molecule Inhibitors

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved