A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This paper describes the use of a desktop virtual store to create virtual shopping environments to investigate in-store consumer behavior. A description of the protocol to build and run experiments, example results from an experiment concerning store layout, and important considerations when conducting virtual store experiments are presented.
People's responses to products and/or choice environments are crucial to understanding in-store consumer behaviors. Currently, there are various approaches (e.g., surveys or laboratory settings) to study in-store behaviors, but the external validity of these is limited by their poor capability to resemble realistic choice environments. In addition, building a real store to meet experimental conditions while controlling for undesirable effects is costly and highly difficult. A virtual store developed by virtual reality techniques potentially transcends these limitations by offering the simulation of a 3D virtual store environment in a realistic, flexible, and cost-efficient way. In particular, a virtual store interactively allows consumers (participants) to experience and interact with objects in a tightly controlled yet realistic setting. This paper presents the key elements of using a desktop virtual store to study in-store consumer behavior. Descriptions of the protocol steps to: 1) build the experimental store, 2) prepare the data management program, 3) run the virtual store experiment, and 4) organize and export data from the data management program are presented. The virtual store enables participants to navigate through the store, choose a product from alternatives, and select or return products. Moreover, consumer-related shopping behaviors (e.g., shopping time, walking speed, and number and type of products examined and bought) can also be collected. The protocol is illustrated with an example of a store layout experiment showing that shelf length and shelf orientation influence shopping- and movement-related behaviors. This demonstrates that the use of a virtual store facilitates the study of consumer responses. The virtual store can be especially helpful when examining factors that are costly or difficult to change in real life (e.g., overall store layout), products that are not presently available in the market, and routinized behaviors in familiar environments.
It is undeniable that understanding consumers' in-store behavior is of critical importance to achieve effective retail marketing. To aid in this understanding, advanced virtual reality technology, known as the virtual store, can enable studies of consumer behavior using computationally created virtual environments. The virtual-store approach uses a virtual reality system to generate realistic and immersive three-dimensional virtual store environments in which people can interact with the objects in the store. In such virtual store environments, people experience artificially created sensory experiences. Virtual store environments can be either realistic representations of store environments that exist in reality, or imaginary store environments. In addition, the virtual store can be seen as an intermediate tool between traditional consumer research (i.e., text-based surveys, focus groups, or lab experiments), controlled field experiments (i.e., in mock store environments), and field studies (i.e., video captures, personal observations, or tests of product sales promotion)1.
Virtual reality applications have considerable research history. As early as 1965, Sutherland2 described his "ultimate display" concept, which includes a virtual world that provides sound and tactile feedback. Originally, attention was mainly focused on the technological hardware, but as this does not provide insights into the effects of virtual reality systems, attention has shifted to the human experience3,4. The sense of "presence," of being in the computer-generated world, has consequently become a key to virtual-reality experiences5,6. Presence has been defined as the "subjective experience of being in an environment, even when one is physically situated in another".7 From this point of view, "sense of presence" can be retrieved from a participant and refers to the extent to which a person perceives him/herself to be in an environment. Alternatively, Slater8 has distinguished between the concepts of presence and immersion, called "place illusion" (PI) and "plausibility illusion" (Psi). PI relates to having a sensation of being in a real place. It is assessed by a set of valid actions or responses that participants can perform to change their perceptions or the environment (e.g., moving the head and eye to change the gaze direction or grasping some object to move it). PI is high when a similar set of responses to change perceptions are required in the virtual reality system compared to the response expected in an equivalent physical environment. Psi accounts for what is perceived in the virtual reality, referring to the illusion that it is actually occurring. A vital component that can lead to Psi is for the virtual reality to provide the illusion that events in the virtual environment over which a participant does not have direct control refer directly to him/herself. Psi can be measured by tracing any actions or responses that people manifest in response to changes in the virtual reality that originated from outside. For example, if people's heart rates increase when they see an avatar in the virtual environment, this can represent a similar reaction to the real world. Thus, this virtual reality system provides high Psi.
The virtual store technology has been introduced in business and academics to serve several purposes. It can be used as a managerial aid, for instance to assist category managers of companies in developing a shelf plan for their products. Virtual stores also have their use in clinical settings, to measure emotional responses to food for patients with an eating disorder1 or as a screening tool for mild cognitive impairment9. A more common use of virtual stores in research, however, is to assess consumer in-store behavior and consumer responses to changes in the store environment, such as price changes10,11,12, different setups of point-of-sale displays13, different packaging options14, different nutritional labels on the backsides of product packages15, and stock levels16. In addition, the virtual store is currently used to help create and test public health interventions to stimulate healthier food choices among children17. Due to various benefits stated previously, virtual store technology and hardware are in rapid development. Therefore, this paper will focus on the human experience and describe the essential elements of studies using virtual reality in general. All essential information obtained from the current virtual store system will be demonstrated.
Currently available virtual store systems can be briefly categorized as: 1) non-immersive (e.g., desktop), 2) semi-immersive (e.g., projection, CAVE-systems), and 3) fully-immersive (e.g., head-mounted displays). Each system likely brings different levels of immersion, presence, PI, and Psi depending upon the support system. However, because the measures of immersion, presence, PI, and Psi are bound to the specific sensorimotor contingencies that each system supports, a comparison of these indicators across different systems has been deemed impossible8. In recent years, desktop virtual stores have received more attention and have been used increasingly in research. Even though the virtual store has been regarded as a promising tool for in-store consumer behavior research, expertise on how to use such a virtual store is required to ensure the timely and correct preparation and implementation of experiments. However, up to now, reported studies that comprehensively describe the procedure to conduct virtual store experiments are very scarce. Therefore, this work aims to describe a protocol for conducting consumer research with the desktop virtual store, which is of vital importance.
Generally, research with a virtual store requires: 1) equipment to display the virtual environment, 2) an editor program to enable researchers to build the virtual environment, 3) a virtual representation of the studied object (e.g., several elements of a store and products), 4) a consumer interface to navigate the virtual environment and make choices, 5) procedures for running the data collection itself, and 6) a data management system that facilitates data storage and analysis. Most of these will likely be managed by a virtual shop company and a programmer. Researchers should know: 1) how to create a retail store for an experiment in an editor program, 2) how to run data collection with the consumer interface, and 3) how to organize all outputs in the data management program and export outputs to be put into a statistical program. The current paper will address this information by giving detailed protocol steps for conducting experiments with the desktop virtual store. Additionally, advantages and limitations of using the virtual store in consumer research will be discussed. The detailed protocol described in this paper can be used to help researchers start and conduct virtual store research.
The desktop virtual store used in this paper requires hardware (i.e., personal computers (PC), liquid-crystal display (LCD) screens, a three-dimensional (3D) space navigator, a mouse, and a keyboard) and software (i.e., to design a shop and to shop like a consumer in a 3D virtual store). This particular system has been used in prior studies14,18.
The protocol adheres to the "Generic Protocol Food Choice Simulator," which complies with the Netherlands Code of Conduct for Scientific Practice and has been approved by the Social Sciences Ethics Committee of Wageningen University.
1. Setting Up the Virtual Store Equipment
Figure 1: The virtual store setup. The virtual store uses one PC equipped with three 42 inch LCD screens that render 180° visibility. A separate PC is added to accommodate the data management program. This PC enables a research coordinator to monitor the progress and to start new virtual environments without interrupting participants. Please click here to view a larger version of this figure.
2. Building Virtual Stores for Experiments
Figure 2: The virtual shop editor and examples of products in the product library. The editor has a drag-and-drop interface to allow researchers to easily select products from the library and directly place them on the shelves. In addition, a pop-up window can be used to either add or edit a product by clicking on a product in the library. Please click here to view a larger version of this figure.
3. Preparing the Data Management Program to Record Data
4. Participant Selection Criteria
5. Preparation for the Experiment
6. Running a Practice Test
7. Running the Main Test
Figure 3: An example of the observation window that signals the recording of data. When the data management program is recording data, the "Status data plugin" window and the "Status event plugin" show a green mark. Also, time should be elapsing and the number of samples should be growing. Please click here to view a larger version of this figure.
Figure 4: The visualization window displayed in the data management program. The orange bar represents the entire shopping time, since the participant entered the store until he/she pressed "Esc" to indicate the end of the shopping trip. The green bar denotes the time spent on the examined products. These outputs can be converted into tables that are easy to use in combination with SPSS or other statistical programs. Please click here to view a larger version of this figure.
8. Export the Data
Figure 5: Data profile filter scheme for exporting shopping-related behavior. The data profile filter allows researchers to select and export the data of interest. For example, this scheme opts for shopping-related behaviors (e.g., shopping duration, number of products examined, number of product purchased, and number of products returned). Please click here to view a larger version of this figure.
Figure 6: Data profile filter scheme for exporting movement-related behavior. This scheme filters the movement-related behaviors (e.g., moving speed and moving time) that occur when participants move in the store (speed >0.100 m/s). The behaviors and times when participants stand still are filtered out. Please click here to view a larger version of this figure.
The virtual store displayed using a PC with three 42-in LCD screens has been applied to examine the effects of supermarket layout on consumer shopping behavior (e.g., total shopping time, movement duration and speed, total number of products examined, and total number of products purchased) and perceived shopping experience. The virtual store enables the researcher to flexibly modify the attributes of store shelves (i.e., shelf length and shelf orientation) and to examin...
The virtual store is one of the more advanced computer technologies that have been developed to create virtual environments in which people can experience and react to close-to-reality objects. Generally, the desktop virtual store consists of user-friendly interfaces that require a short time to understand. However, a number of critical points need to be accounted for. First, clear research objectives are needed beforehand to specify the starting points when building the virtual store. This includes a plan about the prod...
The authors have nothing to disclose.
The authors would like to acknowledge the Royal Thai government, the European Regional Development Fund, and the Dutch provinces Gelderland and Overijssel (Grant number 2011P017004) for financial support. The content of the paper reflects only the views of the authors. The authors also appreciate help from Andrea Poelstra of GreenDino and Tobias Heffelaar of Noldus Information Technology for their valuable input on technical topics.
Name | Company | Catalog Number | Comments |
Virtual Supermarket Software | GreenDino BV | http://www.greendino.nl/virtual-labs.html | This software consists of editor, product library and consumer interface. |
Data Management Software: Observer XT | Noldus Information Technology | http://www.noldus.com/human-behavior-research/products/the-observer-xt | This software records observational data and facilitates the exportation of researcher-specified data sets using filters |
3D SpaceNavigator | 3Dconnexion | http://www.3dconnexion.eu/index.php?id=26&redirect2=www.3dconnexion.eu | A 3D SpaceNavigator allows participants to walk and make turns in the virtual store. In addition, it can be used by participants to adjust their eye-level during a shopping trip. |
3D moddeling software (e.g. Blender or 3DS Max) | Blender Foundation / Autodesk | https://www.blender.org/ http://www.autodesk.nl/products/3ds-max/overview | In case 3D models need to be made or adjusted 3D modeling software is needed. Many objects can be found online under different licencing agreements. |
Contract Reseach | Wageningen Univeristy and Research | http://www.wur.nl/en/Expertise-Services/Research-Institutes/Economic-Research.htm | The socio-economic research institute (Wageningen Economic Research) with experience in conducting the consumer research with the virtual store. |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved