A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This manuscript provides a detailed two-step surgical procedure to perform mouse 5/6th partial nephrectomy (PNx) with pole ligation. Four weeks after surgery, in comparison with sham-operated mice, the PNx mice developed impaired renal function, anemia, cardiac hypertrophy, cardiac fibrosis, and decreased heart systolic and diastolic function.
Chronic kidney disease (CKD) is a great risk factor for cardiovascular disease events and mortality, and progressively develops to the clinical phenotype called "uremic cardiomyopathy". We describe here an experimental CKD mouse model, named 5/6th partial nephrectomy (PNx) with pole ligation, which developed uremic cardiomyopathy at four weeks post-surgery. This PNx model was performed by a two-step surgery. In step-one surgery, both poles of the left kidney were ligated. In step-two surgery, which was performed 7 days after the step-one surgery, the right kidney was removed. For the sham surgery, the same surgery procedures were performed but without pole ligation of the left kidney or removal of the right kidney. The surgical procedures are easier and less time-consuming, compared to other methods. However, the remnant functional renal mass is not as easily controlled as the renal artery ligation. Four weeks after surgery, in comparison with the sham-operated mice, the PNx mice developed impaired renal function, anemia, cardiac hypertrophy, cardiac fibrosis, and decreased heart systolic and diastolic function.
CKD, also known as chronic renal failure, is a progressive loss of kidney function over time that eventually develops into permanent kidney failure. CKD, from early stage renal disease states to end-stage renal disease (ESRD), is a great risk factor for cardiovascular disease events and mortality, and progressively develops to the clinical phenotype called "uremic cardiomyopathy"1,2,3. The uremic cardiomyopathy in patients with CKD or ESRD is associated with cardiovascular abnormalities, mainly caused by overload of left ventricular (LV) pressure and/or volume, leading to LV hypertrophy (LVH), LV dilation, and LV systolic dysfunction4,5,6. Cardiac fibrosis is another common pathological process of uremic cardiomyopathy that reduces cardiac compliance resulting in LV diastolic dysfunction. Severe cardiac fibrosis can lead to sudden cardiac death even in those without cardiac symptoms7.
The 5/6th PNx is a commonly used CKD animal model for animal studies involving renal failure, uremic cardiomyopathy and hypertension. PNx is achieved by ablation of 5/6 renal parenchyma. The rat model was initially developed with the two most common protocols employed being surgical resection or infarction. The rat PNx model is an extremely useful model to study uremic cardiomyopathy with substantial elevations in blood pressure, cardiac hypertrophy and impaired diastolic function. Later, mouse PNx models, operated with the similar techniques as the rat model, were developed due to the wide availability and ease of making genetic manipulations in the mouse system.
It is well-documented that systemic oxidant stress is a constant feature of both clinical and experimental uremic cardiomyopathy8,9. Furthermore, oxidant stress contributes to the uremic syndrome10, and plays a critical role in the pathogenesis of the cardiac abnormalities seen in uremic cardiomyopathy11,12,13. To this point, we have demonstrated that the rodent 5/6th PNx model causes physiological, morphological, and biochemical features of uremic cardiomyopathy14,15,16,17. In the mouse PNx model described here, PNx-operated mice developed significant oxidative stress, at least partially mediated by Na/K-ATPase signaling function, which is critical in PNx-mediated experimental uremic cardiomyopathy. Attenuation of the Na/K-ATPase signaling not only reduces oxidative amplification, but also ameliorates the phenotypical changes in PNx-mediated experimental uremic cardiomyopathy18.
All animal care and experiments were approved by the Marshall University Institutional Animal Care and Use Committee (IACUC) in accordance with the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals. Male C57BL/6 mice (10-12 weeks old) were housed in a pathogen free animal facility in designated rooms equipped with cages that supply purified air under a 12 h light/dark cycle. Food and water were supplied ad libitum.
1. Surgery Preparation
NOTE: The surgical instruments and materials are obtained from different sources that are not specific to surgery operations. Instruments and materials from other sources can also be used for the same purpose. See the Table of Materials for a list of surgical instruments.
2. Step-one Surgery: Pole Ligation of Left Kidney
NOTE: Maintain sterile conditions during the surgery. Cover the autoclaved surgical instruments with a sterile pad. Keep more than one set of surgical instruments in hand for more than one surgery to prevent cross contamination during the surgery. If the instruments need to be used again, in the case of multiple surgeries, disinfect the instruments with betadine solution and 70% ethanol, and then sterilize in a germinator glass bead sterilizer for 5 min. Disinfect the operating area with 70% ethanol. Wear a gown, mask (to cover nose and mouth), cap (to cover head), and a pair of sterile gloves. Change gloves after each surgery.
3. Step-two Surgery: Removal of Right Kidney
4. Sham Surgery
5. Evaluation of Experimental Uremic Cardiomyopathy
The data indicated that this modified 5/6th PNx model by pole ligation is a simple and effective model to investigate uremic cardiomyopathy. At four weeks post-surgery, this PNx model presents impaired renal function, anemia, cardiac hypertrophy, cardiac fibrosis, and decreased heart systolic and diastolic function. The results are summarized below.
At four weeks post-surgery, the PNx mice developed i...
The rat 5/6th PNx model has been widely used to study CKD. Because of the much smaller kidney size in mouse, the classical artery ligation and pole resection are very challenging in mouse models with possible high mortality rates and unexpected bleeding/blood loss.
We adopted a mouse PNx model with pole ligation to overcome the bleeding/blood loss. This PNx model takes less time with improved survival rate and high reproducibility. This pole ligation model develops the phenotypic ch...
The authors have nothing to disclose.
This work was supported by NIH R15 1R15DK106666-01A1 (to J. Liu) and NIH RO1 HL071556 (to J.I. Shapiro).
Name | Company | Catalog Number | Comments |
Iris Scissors, 11.5 cm, Straight | World Precision Instruments | 501758 | |
WPI Swiss Tweezers #5 11 cm, 0.1x0.06 mm Tips | World Precision Instruments | 504506 | |
Jewelers #5 Forceps, 11cm, Straight, Titanium | World Precision Instruments | 555227F | |
Iris Forceps, 10cm, Straight, Serrated | World Precision Instruments | 15914 | |
Tweezers #3, 11cm, 0.2x0.4mm Tips | World Precision Instruments | 501976 | |
Medesy Iris 4.5" Curved Scissors, Stainless Steel | Net23 | 3512 | www.Net32.com |
Dr. Slick Iris Scissors; 3.5" | Avid Max | 220-1-965-IrisScsrs-P | www.Avid Max.com |
Miltex Iris Scissors 4 1/8" Curved | 4mdmedical | V95-306 | www.4mdmedical.com |
5" Hemostat clap, curved jaw | PJTool | 4355 | www.pjtool.com |
sklar Knapp Iris scissors, straight and sharp/blunt 4" | Medical Device depot | 64-3430 | www.medicaldevicedepot.com |
Kelly Hemostatic Forceps straight 5.5" | Pilgtimmedical | FA710-50 | www.pilgtimmedical.com |
C57BL/6 mice | Hilltop Lab Animals Inc. | ||
Mouse Handling Table and rectal thermometer | Visualsonics | ||
MicroScan transducer | Vevo 1100 | MS400 | |
Vevo 1100 Imaging System | FUJIFILM VisualSonics Inc. | ||
Cystatin C ELISA kit and mouse creatinine kit | Crystal Chem. Inc. | ||
Mouse BUN ELISA kit | MyBioSource Inc |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved