A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we present a protocol for recording rhythmic neuronal network theta and gamma oscillations from an isolated whole hippocampal preparation. We describe the experimental steps from extraction of the hippocampus to details of field, unitary and whole-cell patch clamp recordings as well as optogenetic pacing of the theta rhythm.
This protocol outlines the procedures for preparing and recording from the isolated whole hippocampus, of WT and transgenic mice, along with recent improvements in methodologies and applications for the study of theta oscillations. A simple characterization of the isolated hippocampal preparation is presented whereby the relationship between internal hippocampal theta oscillators is examined together with the activity of pyramidal cells, and GABAergic interneurons, of the cornu ammonis-1 (CA1) and subiculum (SUB) areas. Overall, we show that the isolated hippocampus is capable of generating intrinsic theta oscillations in vitro and that rhythmicity generated within the hippocampus can be precisely manipulated by optogenetic stimulation of parvalbumin-positive (PV) interneurons. The in vitro isolated hippocampal preparation offers a unique opportunity to use simultaneous field and intracellular patch-clamp recordings from visually-identified neurons to better understand the mechanisms underlying theta rhythm generation.
Hippocampal theta oscillations (4 - 12 Hz) are amongst the most predominant forms of rhythmic activity in the mammalian brain and are believed to play key roles in cognitive functions such as processing of spatiotemporal information and formation of episodic memories1,2,3. While several in vivo studies that highlight the relationship of theta-modulated place-cells with spatial navigation and lesion studies, as well as clinical evidence, support the view that hippocampal theta oscillations are involved in memory formation4,5,6, the mechanisms associated with generation of hippocampal theta oscillations are still not fully understood. Early in vivo investigations suggested that theta activity depended mainly on extrinsic oscillators, in particular rhythmic input from afferent brain structures such as the septum and entorhinal cortex7,8,9,10. A role for intrinsic factors - internal connectivity of hippocampal neural networks together with the properties of hippocampal neurons - was also postulated based on in vitro observations11,12,13,14,15,16,17,18. However, apart from a few landmark studies19,20,21, difficulties in developing approaches that could replicate physiologically realistic population activities in simple in vitro slice preparations have, for a long time, delayed more detailed experimental examination of the intrinsic abilities of the hippocampus and related areas to self-generate theta oscillations.
An important downside of the standard in vitro thin-slice experimental setting is that the 3D cellular and synaptic organization of brain structures is usually compromised. This means that many forms of concerted network activities based on spatially distributed cell assemblies, ranging from localized groups (≤1 mm radius) to populations of neurons spread across one or more brain areas (>1 mm), cannot be supported. Given these considerations, a different type of approach was needed to study how theta oscillations emerge in the hippocampus and propagate to related cortical and subcortical output structures.
In recent years, the initial development of the "complete septo-hippocampal" preparation to examine bidirectional interactions of the two structures22, and the ensuing evolution of the "isolated hippocampus" preparation, have revealed that intrinsic theta oscillations occur spontaneously in the hippocampus lacking external rhythmic input23. The value of these approaches lies on the initial insight that the whole functional structure of these regions had to be preserved in order to function as a theta rhythm generator in vitro22.
All procedures have been performed according to protocols and guidelines approved by the McGill University Animal Care Committee and the Canadian Council on Animal Care.
1. Acute Hippocampus In Vitro Preparation
NOTE: Isolating the intact hippocampal preparation involves three major steps: (1) Preparation of solutions and equipment, (2) Dissection of the hippocampus and (3) Setting up the fast perfusion rate system necessary for generation of intrinsic theta oscillations. In this protocol, the timely performance of procedures – from dissection to recording – is particularly important because the isolated hippocampus constitutes such a dense, but delicate, preparation that maintaining functional connectivity of the structure in vitro requires great care. Preparing everything beforehand ensures that an adequate level of perfusion is available as early as possible to minimize cell damage and maintain physiological function.
2. Whole Hippocampus Dissection
NOTE: The method for dissecting the isolated hippocampus is essentially identical to the one developed and described originally22, but with additional details and changes regarding the perfusion rate and recording techniques.
3. Set Up the Fast Perfusion for Recording the Isolated Hippocampus
4. Electrophysiology in the Isolated Hippocampus
This section illustrates examples of results that can be obtained by studying theta oscillations in the mouse isolated hippocampal preparation in vitro. The dissection procedure for extracting the isolated hippocampus is illustrated in Figure 1. Using this preparation, intrinsic theta oscillations can be examined during placement of multiple field electrodes, recording overall activity and synchronized synaptic inputs to neuronal populations in diffe...
While electrophysiological recordings from acute hippocampal slices constitute a standard in vitro technique, the methods presented here differ substantially from the classic approach. Unlike the thin slice preparations where specific cell layers are visible at the surface and can be examined directly, the intact hippocampal preparations are more akin to in vivo configurations where electrodes are lowered into targeted brain regions while crossing through individual layers. The integrity of the hippocam...
The authors declare no competing commercial or financial interests.
This work was supported by the Canadian Institutes of Health Research and Natural Sciences.
Name | Company | Catalog Number | Comments |
Reagents | |||
Sodium Chloride | Sigma Aldrich | S9625 | |
Sucrose | Sigma Aldrich | S9378 | |
Sodium Bicarbonate | Sigma Aldrich | S5761 | |
NaH2PO4 - sodium phosphate monobasic | Sigma Aldrich | S8282 | |
Magnesium sulfate | Sigma Aldrich | M7506 | |
Potassium Chloride | Sigma Aldrich | P3911 | |
D-(+)-Glucose | Sigma Aldrich | G7528 | |
Calcium chloride dihydrate | Sigma Aldrich | C5080 | |
Sodium Ascorbate | Sigma Aldrich | A7631-25G | |
Name | Company | Catalog Number | Comments |
Equipment | |||
Standard Dissecting Scissors | Fisher Scientific | 08-951-25 | brain extraction |
Scalpel Handle #4, 14cm | WPI | 500237 | brain extraction |
Filter forceps, flat jaws, straight (11cm) | WPI | 500456 | brain extraction |
Paragon Stainless Steel Scalpel Blades #20 | Ultident | 02-90010-20 | brain extraction |
Fine Point Curved Dissecting Scissors | Thermo Fisher Scientific | 711999 | brain extraction |
Teflon (PTFE) -coated thin spatula | VWR | 82027-534 | hippocampal preparation |
Hayman Style Microspatula | Fisher Scientific | 21-401-25A | hippocampal preparation |
Lab spoon | Fisher Scientific | 14-375-20 | hippocampal preparation |
Borosilicate Glass Pasteur Pipets | Fisher Scientific | 13-678-20A | hippocampal preparation |
Droper | Fisher Scientific | hippocampal preparation | |
Razor blades Single edged | VWR | 55411-055 | hippocampal preparation |
Lens paper (4X6 inch) | VWR | 52846-001 | hippocampal preparation |
Glass petri dishes (100 x 20 mm) | VWR | 25354-080 | hippocampal preparation |
Plastic tray for ice; size 30 x 20 x 5 cm | n.a. | n.a. | hippocampal preparation |
Single Inline Solution Heater | Warner Instruments | SH-27B | perfusion system |
Aquarium air stones for bubbling | n.a. | n.a. | perfusion system |
Tygon E-3603 tubing (ID 1/16 OD 1/8) | Fisherbrand | 14-171-129 | perfusion system |
Electric Skillet | Black & Decker | n.a. | perfusion system |
95% O2/5% CO2 gas mixture (carbogen) | Vitalaire | SG466204A | perfusion system |
Glass bottles/flasks (4 x 1 L) | n.a. | n.a. | perfusion system |
Submerged recording Chamber | custom design (FM) | n.a. | Commercial alternative may be used |
Glass pipettes (1.5 / 0.84 OD/ID (mm) ) | WPI | 1B150F-4 | electrophysiology |
Hum Bug 50/60 Hz Noise Eliminator | Quest Scientific | Q-Humbug | electrophysiology |
Multiclamp 700B patch-clamp amplifier | Molecular devices | MULTICLAMP | electrophysiology |
Multiclamp 700B Commander Program | Molecular devices | MULTICLAMP | electrophysiology |
Digital/Analogue converter | Molecular devices | DDI440 | electrophysiology |
PCLAMP10 | Molecular devices | PCLAMP10 | electrophysiology |
Vibration isolation table | Newport | n.a. | electrophysiology |
Micromanipulators (manually operated ) | Siskiyou | MX130 | electrophysiology (LFP) |
Micromanipulators (automated) | Siskiyou | MC1000e | electrophysiology (patch) |
Audio monitor | A-M Systems | Model 3300 | electrophysiology |
Micropipette/Patch pipette puller | Sutter | P-97 | electrophysiology |
Custom-built upright fluorescence microscope | Siskiyou | n.a. | Imaging |
Analogue video camera | COHU | 4912-2000/0000 | Imaging |
Digital frame grabber with imaging software | EPIX, Inc | PIXCI-SV7 | Imaging |
Olympus 2.5x objective | Olympus | MPLFLN | Imaging |
Olympus 40x water immersion objective | Olympus | UIS2 LUMPLFLN | Imaging |
Custom-made light-emitting diode (LED) system | custom | n.a. | optogenetic stimulation (Amhilon et al., 2015) |
Name | Company | Catalog Number | Comments |
Animals | |||
PV::Cre (KI) mice | Jackson Laboratory | stock number 008069 | Allow Cre-directed gene expression in PV interneurons |
Constitutive-conditional Ai9 mice (R26-lox-stop-lox-tdTomato (KI)) | Jackson Laboratory | stock number 007905 | Express TdTomato following Cre-mediated recombination |
Ai32 mice (R26-lox-stop-lox-ChR2(H134R)-EYFP | Jackson Laboratory | stock number 012569 | Express the improved channelrhodopsin-2/EYFP fusion protein following exposure to Cre recombinase |
PVChY mice | In house breeding | n.a. | Offspring obtained from cross-breeding the PV-Cre line with Ai32 mice (R26-lox-stop-lox-ChR2(H134R)-EYFP |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved