A subscription to JoVE is required to view this content. Sign in or start your free trial.
Aquafaba is a viscous juice from canned chickpea that, when stirred vigorously, produces a relatively stable white froth or foam. The primary research goal is to identify the components of aquafaba that contribute viscosifying/thickening properties using nuclear magnetic resonance (NMR), ultrafiltration, electrophoresis, and peptide mass fingerprinting.
Chickpea and other pulses are commonly sold as canned products packed in a thick solution or a brine. This solution has recently been shown to produce stable foams and emulsions, and can act as a thickener. Recently interest in this product has been enhanced through the internet where it is proposed that this solution, now called aquafaba by a growing community, can be used a replacement for egg and milk protein. As aquafaba is both new and being developed by an internet based community little is known of its composition or properties. Aquafaba was recovered from 10 commercial canned chickpea products and correlations among aquafaba composition, density, viscosity and foaming properties were investigated. Proton NMR was used to characterize aquafaba composition before and after ultrafiltration through membranes with different molecular weight cut offs (MWCOs of 3, 10, or 50 kDa). A protocol for electrophoresis, and peptide mass fingerprinting is also presented. Those methods provided valuable information regarding components responsible for aquafaba functional properties. This information will allow the development of practices to produce standard commercial aquafaba products and may help consumers select products of superior or consistent utility.
Increasingly vegetarian products are being developed that mimic the properties of meat, milk, and eggs. The functional properties of pulses are important in their current uses in food applications and their properties are being explored in the development of replacements for animal protein. For example, dairy alternatives sales were $8.80 Billion USD in 2015 and this market is growing rapidly. This market is projected to grow to $35.06 billion by 2024. Moreover, the upward trend in demand for plant-based milk substitutes is, in part, a result of consumer health concerns regarding cholesterol, antibiotics, and growth hormones often used in milk production
Separation of Aquafaba from Chickpeas
Obtain a Representative Sample of Chickpeas and Aquafaba for Chemical Analysis.
Each can of chick peas is labeled to indicate the ingredients added during canning. Ingredients included water, chick peas, salt, and disodium ethylenediamine tetraacetic acid (EDTA). In addition, two cans were labeled as "may contain calcium chloride". Three distinct lining colours were observed; white, clear yellow and metallic (Table 1).
Brand c....... |
In this research, we have found that chickpea aquafaba from different commercial sources produces foams that vary in both properties (volume and stability of foam) and chemical composition. There was a positive correlation between aquafaba viscosity and moisture content. Foam volume increase (Vf100) was not related to these parameters. Additives such as salt and disodium EDTA might suppress viscosity and foam stability as aquafaba from chickpea canned with these additives had lower viscosity and produced foams.......
This research was supported by the Institute of International Education's Scholar Rescue Fund (IIE-SRF).
....Name | Company | Catalog Number | Comments |
Freeze Dryer | |||
Stoppering Tray Dryer | Labconco Inc. | 7948040 | |
Mixer | |||
Stainless steel hand mixer | Loblaws | PC2200MR | |
Viscosity Measurement | |||
Shell cup No. 2 | Norcross Corp. | ||
Color Measurement | |||
Colorflex HunterLab spectrophotometer | Hunter Associates Laboratory Inc. | ||
Protein and Carbon Contents | |||
Elemental analyzer | LECO Corp. | CN628 | |
NMR Spectrometry | |||
Spectrafuge 24D | Labnet International Inc. | ||
Syringe filters | VWR International | CA28145-497 | 25 mm, with 0.45 µm PTFE membrane |
Deuterium oxide | Cambridge Isotope Laboratories Inc. | 7789-20-0 | |
3-(trimethylsilyl)propionic-2,2,3,3-d4 acid sodium salt | Sigma-Aldrich | 169913-1G | |
Bruker Avance 500 MHz NMR spectrometer | Bruker BioSpin | ||
TopSpin 3.2 software | Bruker BioSpin GmbH | ||
Electrophoresis | |||
Regenerated cellulose membrane | Millipore Corp. | 3, 10, 50 kDa (MWCO) | |
Centrifugal filter unit | Millipore Corp. | ||
Benchtop centrifuge | Allegra X-22R, Beckman Coulter Canada Inc. | ||
Mixer Mill MM 300 bead mill | F. Kurt Retsch GmbH & Co. KG | ||
Eppendorf centrifuge 5417C | Eppendorf | ||
Phosphate buffered saline, pH 7.4 | Sigma-Aldrich | P3813-10PAK | |
Tris-HCl buffer pH 7.4 | Sigma-Aldrich | T6789-10PAK | |
PageRuler Prestained Protein Ladder | Fisher Scientific | ||
Mini-Protein Tetra Cell system | BioRad | ||
Peptide Mass Fingerprinting | |||
Thermo-Savant SpeedVac | BioSurplus | Centrifugal vacuum evaporator | |
Trypsin buffer | 20 µL trypsin in 1 mM hydrochloric acid and 200 mM NH4HCO3 | ||
Iodoacetamide | Sigma-Aldrich | I1149-5 g | |
Trifluoroacetic acid | Fluka | BB360P050 | |
Acetonitrile | Fisher Scientific | L14734 | |
Formic acid | Sigma-Aldrich | 33015-500mL | |
Mass spectrometry vial | Agilent Technologies Canada Ltd. | ||
Agilent 6550 iFunnel quadrupole time-of-flight mass spectrometer | Agilent Technologies Canada Ltd. | Agilent 1260 series LC instrument and Agilent Chip Cube LC-MS interface | |
HPLC-Chip II: G4240-62030 Polaris-HR-Chip_3C18 | 360 nL enrichment column and 75 µm × 150 mm analytical column, both packed with Polaris C18-A, 180Å, 3 µm stationary phase. | ||
Agilent MassHunter Qualitative Analysis Software | Agilent Technologies Canada Ltd. | ||
SpectrumMill data extractors | Agilent Technologies Canada Ltd. |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved