A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
This manuscript provides a protocol for the analysis of DNA double-strand breaks by immunofluorescence microscopy of γH2AX and 53BP1.
DNA double-strand breaks (DSB) are serious DNA lesions. Analysis of the formation and repair of DSB is relevant in a broad spectrum of research areas including genome integrity, genotoxicity, radiation biology, aging, cancer, and drug development. In response to DSB, the histone H2AX is phosphorylated at Serine 139 in a region of several megabase pairs forming discrete nuclear foci detectable by immunofluorescence microscopy. In addition, 53BP1 (p53 binding protein 1) is another important DSB-responsive protein promoting repair of DSB by nonhomologous end-joining while preventing homologous recombination. According to the specific functions of γH2AX and 53BP1, the combined analysis of γH2AX and 53BP1 by immunofluorescence microscopy may be a reasonable approach for a detailed analysis of DSB. This manuscript provides a step-by-step protocol supplemented with methodical notes for performing the technique. Specifically, the influence of the cell cycle on γH2AX foci patterns is demonstrated in normal fibroblasts of the cell line NHDF. Further, the value of the γH2AX foci as a biomarker is depicted in x-ray irradiated lymphocytes of a healthy individual. Finally, genetic instability is investigated in CD34+ cells of a patient with acute myeloid leukemia by immunofluorescence microscopy of γH2AX and 53BP1.
DNA is continuously damaged by endogenous (e.g., replication stress, reactive oxygen species, intrinsic instability of DNA) and exogenous (e.g., chemical radicals, irradiation) sources (Figure 1)1,2,3,4. Among DNA damage, DNA double-strand breaks (DSB) are particularly serious lesions and may induce cell death or carcinogenesis. About 50 DSB may arise per cell and cell cycle5. In mammalian cells, homologous recombination (HR) and nonhomologous end-joining (NHEJ) developed as major pathways for the repair of DSB (Figure 2). HR occurs in late S/G2 phase and uses an intact sister chromatid as a template for potentially error-free repair. In comparison, NHEJ is active throughout the cell cycle and potentially mutagenic as base pairs may be added or resected before ligation of the broken ends. In addition, alternative end-joining may be engaged as a slow mutagenic back-up repair mechanism in case of NHEJ deficiency6,7.
DSB induce the phosphorylation of the histone H2AX at Serine 139 in a region of several megabase pairs around each DSB. The forming nuclear foci are named γH2AX foci and are detectable by immunofluorescence microscopy8. γH2AX promotes the recruitment of further DSB-responsive proteins and is involved in chromatin remodeling, DNA repair, and signal transduction9. As each γH2AX focus is considered to represent a single DSB, the quantification of DSB by immunofluorescence microscopy is possible, which has been demonstrated in cancer cell lines and patient specimens10,11,12,13,14. 53BP1 (p53 binding protein 1) is another key protein in mediating DSB repair. It is involved in the recruitment of DSB-responsive proteins, checkpoint signaling, and the synapsis of DSB ends15. In addition, 53BP1 plays a critical role in the DSB repair pathway choice. It triggers the repair of DSB towards NHEJ while HR is prevented16. Considering the genuine functions of γH2AX and 53BP1 in DSB repair, the simultaneous analysis of γH2AX and 53BP1 by immunofluorescence microscopy may be a useful method for the precise analysis of the formation and repair of DSB.
This manuscript provides a step-by-step protocol for performing immunofluorescence microscopy of γH2AX and 53BP1 in cell nuclei. Specifically, the technique is applied in normal fibroblasts of the cell line NHDF, in x-ray irradiated lymphocytes of a healthy individual and in CD34+ cells of a patient with acute myeloid leukemia. The details of the method are pointed out in the context of the presented results.
All methods described here have been approved by the Ethics Committee II of the Medical Faculty Mannheim of the Heidelberg University. Written informed consent was obtained from all individuals.
1. Preparation of Materials
2. Preparation of the Samples
3. γH2AX and 53BP1 Immunofluorescence Staining
4. Analysis of γH2AX and 53BP1 Foci
Analysis of γH2AX foci in cells is most accurate in the G0/G1 phase and the G2 phase when γH2AX foci appear as distinct fluorescent dots (Figure 5A). In contrast, analysis of γH2AX foci in cells during the S phase is complicated by dispersed pan-nuclear γH2AX speckles caused by the replication process (Figure 5B).
Fixation of the cells was performed ...
Immunofluorescence microscopy of γH2AX and 53BP1 is a useful method for analyzing formation and repair of DSB in a broad spectrum of research areas. Critical parameters that influence the outcome of the experiments are the phase of the cell cycle, the agents used for the fixation and permeabilization of the cells, the choice of the antibodies, and the hardware and software of the fluorescence microscope.
The influence of the cell cycle on γH2AX foci patterns was demonstrated by expon...
The authors have nothing to disclose.
The project was supported by the German José Carreras Leukemia Foundation (DJCLS 14 R/2017).
Name | Company | Catalog Number | Comments |
RPMI medium | Sigma-Aldrich | R0883 | Medium for cell culture |
Heparin sodium | ratiopharm | PZN 3029843 | Heparin 5,000 I.U. / mL |
Sodium chloride solution 0.9% | B. Braun | PZN 1957154 | Component of the anticoagulant stock solution |
Ficoll-Paque Premium | GE Healthcare | 17-5442-02 | Medium for isolation of mononuclear cells |
Trypsin solution 10X | Sigma-Aldrich | 59427C | Enzyme for dissociation of fibroblasts in cell culture |
CD34 MicroBead Kit | Miltenyi Biotec | 130-046-702 | Isolation of CD34+ myeloid progenitor cells |
Diagnostic microscope slides | Thermo Scientific | ER-203B-CE24 | Microscope slides |
Megafuge 1.0 R | Heraeus | 75003060 | Tabletop centrifuge |
Cytospin device | |||
Lid | Heraeus | 76003422 | Lid for working without micro-tubes |
Cyto container | Heraeus | 75003416 | Cyto container with 2 conical bores |
Clip carrier | Heraeus | 75003414 | Carrier for holding a cyto container and a slide |
Support insert | Heraeus | 75003417 | Support insert for holding a clip carrier |
Triton X-100 (Octoxinol 9) | Thermo Scientific | 85112 | Detergent for permeabilization of cell membranes |
Potassium hydroxide solution 1M | Merck Millipore | 109107 | Necessary for preparing the paraformaldehyde solution |
Paraformaldehyde | Sigma-Aldrich | P6148 | Fixation agent |
Phosphate buffered saline | Sigma-Aldrich | D8537 | Balanced salt solution |
Chemiblocker | Merck Millipore | 2170 | Blocking agent |
Mouse monoclonal anti-γH2AX antibody (JBW301) | Merck Millipore | 05-636 | Primary antibody for detection of γH2AX |
Polyclonal rabbit anti-53BP1 antibody (NB100-304) | Novus Biologicals | NB100-304 | Primary antibody for detection of 53BP1 |
Alexa Fluor 488-conjugated goat anti-mouse antibody | Invitrogen | A-11001 | Secondary antibody |
Alexa Fluor 555-conjugated donkey anti-rabbit antibody | Invitrogen | A-31572 | Secondary antibody |
Vectashield mounting medium | Vector Laboratories | H-1200 | Contains DAPI for staining of DNA |
Axio Scope.A1 | Zeiss | 490035 | Fluorescence microscope |
Cool Cube 1 CCD camera | Metasystems | H-0310-010-MS | Camera system for digital recording |
Isis software | Metasystems | Not applicable | Microscope software |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved