JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

This manuscript provides a protocol for the analysis of DNA double-strand breaks by immunofluorescence microscopy of γH2AX and 53BP1.

Abstract

DNA double-strand breaks (DSB) are serious DNA lesions. Analysis of the formation and repair of DSB is relevant in a broad spectrum of research areas including genome integrity, genotoxicity, radiation biology, aging, cancer, and drug development. In response to DSB, the histone H2AX is phosphorylated at Serine 139 in a region of several megabase pairs forming discrete nuclear foci detectable by immunofluorescence microscopy. In addition, 53BP1 (p53 binding protein 1) is another important DSB-responsive protein promoting repair of DSB by nonhomologous end-joining while preventing homologous recombination. According to the specific functions of γH2AX and 53BP1, the combined analysis of γH2AX and 53BP1 by immunofluorescence microscopy may be a reasonable approach for a detailed analysis of DSB. This manuscript provides a step-by-step protocol supplemented with methodical notes for performing the technique. Specifically, the influence of the cell cycle on γH2AX foci patterns is demonstrated in normal fibroblasts of the cell line NHDF. Further, the value of the γH2AX foci as a biomarker is depicted in x-ray irradiated lymphocytes of a healthy individual. Finally, genetic instability is investigated in CD34+ cells of a patient with acute myeloid leukemia by immunofluorescence microscopy of γH2AX and 53BP1.

Introduction

DNA is continuously damaged by endogenous (e.g., replication stress, reactive oxygen species, intrinsic instability of DNA) and exogenous (e.g., chemical radicals, irradiation) sources (Figure 1)1,2,3,4. Among DNA damage, DNA double-strand breaks (DSB) are particularly serious lesions and may induce cell death or carcinogenesis. About 50 DSB may arise per cell and cell cycle5. In mammalian cells, homologous recombination (HR) and nonhomologous end-joining (NHEJ) develope....

Access restricted. Please log in or start a trial to view this content.

Protocol

All methods described here have been approved by the Ethics Committee II of the Medical Faculty Mannheim of the Heidelberg University. Written informed consent was obtained from all individuals.

1. Preparation of Materials

  1. Anticoagulant stock solution: Prepare an anticoagulant stock solution of 200 I.U. heparin per mL in 0.9% sodium chloride. Fill each of the collection tubes (draw volume 9 mL) with 2 mL of the anticoagulant stock solution before withdrawal of the blood or bone marrow samples.
  2. Lysis solution for red cells: Prepare the 10x lysis solution for red cells with 82.91 g ....

Access restricted. Please log in or start a trial to view this content.

Results

Analysis of γH2AX foci in cells is most accurate in the G0/G1 phase and the G2 phase when γH2AX foci appear as distinct fluorescent dots (Figure 5A). In contrast, analysis of γH2AX foci in cells during the S phase is complicated by dispersed pan-nuclear γH2AX speckles caused by the replication process (Figure 5B).

Fixation of the cells was performed .......

Access restricted. Please log in or start a trial to view this content.

Discussion

Immunofluorescence microscopy of γH2AX and 53BP1 is a useful method for analyzing formation and repair of DSB in a broad spectrum of research areas. Critical parameters that influence the outcome of the experiments are the phase of the cell cycle, the agents used for the fixation and permeabilization of the cells, the choice of the antibodies, and the hardware and software of the fluorescence microscope.

The influence of the cell cycle on γH2AX foci patterns was demonstrated by expon.......

Access restricted. Please log in or start a trial to view this content.

Disclosures

The authors have nothing to disclose.

Acknowledgements

The project was supported by the German José Carreras Leukemia Foundation (DJCLS 14 R/2017).

....

Access restricted. Please log in or start a trial to view this content.

Materials

NameCompanyCatalog NumberComments
RPMI mediumSigma-AldrichR0883Medium for cell culture
Heparin sodiumratiopharmPZN 3029843 Heparin 5,000 I.U. / mL
Sodium chloride solution 0.9%B. BraunPZN 1957154Component of the anticoagulant stock solution
Ficoll-Paque PremiumGE Healthcare17-5442-02Medium for isolation of mononuclear cells
Trypsin solution 10XSigma-Aldrich59427CEnzyme for dissociation of fibroblasts in cell culture
CD34 MicroBead KitMiltenyi Biotec130-046-702Isolation of CD34+ myeloid progenitor cells
Diagnostic microscope slidesThermo ScientificER-203B-CE24Microscope slides
Megafuge 1.0 RHeraeus75003060 Tabletop centrifuge 
Cytospin device
LidHeraeus76003422Lid for working without micro-tubes
Cyto containerHeraeus75003416Cyto container with 2 conical bores
Clip carrierHeraeus75003414Carrier for holding a cyto container and a slide
Support insertHeraeus75003417Support insert for holding a clip carrier
Triton X-100 (Octoxinol 9)Thermo Scientific85112Detergent for permeabilization of cell membranes
Potassium hydroxide solution 1MMerck Millipore109107Necessary for preparing the paraformaldehyde solution
ParaformaldehydeSigma-AldrichP6148Fixation agent
Phosphate buffered salineSigma-AldrichD8537Balanced salt solution
ChemiblockerMerck Millipore2170Blocking agent
Mouse monoclonal anti-γH2AX antibody (JBW301)Merck Millipore05-636Primary antibody for detection of γH2AX
Polyclonal rabbit anti-53BP1 antibody (NB100-304)Novus BiologicalsNB100-304Primary antibody for detection of 53BP1
Alexa Fluor 488-conjugated goat anti-mouse antibodyInvitrogenA-11001Secondary antibody
Alexa Fluor 555-conjugated donkey anti-rabbit antibodyInvitrogenA-31572Secondary antibody
Vectashield mounting mediumVector LaboratoriesH-1200Contains DAPI for staining of DNA
Axio Scope.A1Zeiss490035Fluorescence microscope
Cool Cube 1 CCD cameraMetasystemsH-0310-010-MSCamera system for digital recording
Isis softwareMetasystemsNot applicableMicroscope software

References

  1. Hoeijmakers, J. H. Genome maintenance mechanisms for preventing cancer. Nature. 411 (6835), 366-374 (2001).
  2. Lindahl, T. Instability and decay of the primary structure of DNA. Nature. 362 (6422), 709-715 (1993).
  3. Zeman, M. K., Cimprich, K. A.

Access restricted. Please log in or start a trial to view this content.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Immunofluorescence MicroscopyH2AX53BP1DNA Double strand BreaksCancer ResearchGenetic InstabilityCell FixationPermeabilizationBlocking SolutionBlood SampleBone Marrow Sample

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved