A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here we present a protocol to increase chimera production without the use of new equipment. A simple orientation change of the embryo for injection can increase the number of embryos produced, and potentially reduce the timeline to germline transmission.
In an effort to increase efficiency in the creation of genetically modified mice via ES Cell methodologies, we present an adaptation to the current blastocyst injection protocol. Here we report that a simple rotation of the embryo, and injection through Trans-Inner cell mass (TICM) increased the percentage of chimeric mice from 31% to 50%, with no additional equipment or further specialized training. 26 different inbred clones, and 35 total clones were injected over a period of 9 months. There was no significant difference in either pregnancy rate or recovery rate of embryos between traditional injection techniques and TICM. Therefore, without any major alteration in the injection process and a simple positioning of the blastocyst and injecting through the ICM, releasing the ES cells into the blastocoel cavity can potentially improve the quantity of chimeric production and subsequent germline transmission.
For nearly 25 years, the creation of genetically targeted mice has been a slow process, often hampered by a bottleneck at the blastocysts ES cell microinjection stage for the generation of germline transmitting chimeras. Recent advancements, including CRISPR/Cas91,2 targeting in ES cells and high-throughput ES cell generation consortiums like KOMP, have improved the generation/availability of genetically modified ES cells. However, the generation of germline chimeras remains a bottleneck in creating genetically modified mice from these ES cells3,4. High-throughput ES cell generation projects have been plagued by high variability in ES cell quality, which is critical for successful creation of germline chimeras. Additionally, some of the commonly utilized ES cell lines are known for high aneuploidy, and difficult production of germline competent chimeras5.
Many methods have been developed for creating mice with either a higher chimera, or completely ES cell derived mice6,7,8,9,10. While each of these systems has its own merits, they also have their shortcomings. The generation of tetraploid chimeras, while generating 100% ES cell derived mice, is inefficient, and generally limited to outbred lines 5,6. Newer methods of injecting morula can yield high percentage chimeras, approaching 100%, but generally require significant additional equipment (lasers or piezos) and training10,11. In laboratories where these techniques are already in place, this new methodology may not be necessary.
This study's objective was to find a method that uses common techniques and readily available equipment to increase the rate of chimera generation, increasing the chance of germline transmission of the mutant allele to establish the subsequent mouse colony.
All operations were done as part of the normal operation of the NIEHS Knock Out Mouse Core facility. All mice were kept on a 12:12 h light:dark cycle, and were feed a diet of NIH-31 and water ad libitum. All experiments were performed in accordance with the Animal Care and Use Committee of the National Institute of Environmental Health Sciences.
1. Animal Preparation
2. ES Cell Preparation
3. Embryo Collection
4. Embryo Injection
5. Transfer of eEmbryos
Treating cell-line as the random effect, a mixed effects linear model was used to analyze the data in the software (e.g. SAS (version 9.2)). Each analysis controlled for the number of embryos transferred and the cell line. The second analysis also controlled for the number of pups that survived.
For this study, each ES Cell line and clone was injected both with traditional and TICM techniques, alternating between the two methods...
It has long been thought that any disturbance of the ICM could lead to mortality, in fact, current blastocyst microinjection protocols still warn of this12,13. What we have shown here is that microinjection through the ICM is not detrimental to the embryo, and increases the yield of chimeras.
The exact mechanism for this effect has not been identified. However, the mechanical disruption of the ICM, and the accompanying hypoblast, shoul...
The authors have no competing interests to disclose.
This research was supported [in part] by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences. Special thanks to Shyamal Peddada for statistical analysis. We also wish to thank Humphrey Yao, Gary Bird, and Yuki Arao for review of this manuscript, and Franco DeMayo for his continued support and advice.
Name | Company | Catalog Number | Comments |
ES Cell injection needle | Humagen | MSC-20-0 | |
NSET device | Paratechs | 60010 | |
DMEM | Gibco (life technologies) | 11965-092 | |
FBS | Gibco (life technologies) | 10439-024 | lots should be individually tested for ES Cell compatibility. |
HEPES | Sigma | H0887 | |
β-mercaptoethanol | Sigma | M7522 | |
Micro manipulator | Leica | Micro manipulator | |
micro injector | Eppendorf AG | Cell Tram Air 5176 | |
Microscope | Leica | DM IRB | |
4 well dish | Thermo Scientific | 176740 | |
60 mm dish | Sarstedt | 83.3901 | |
B6(Cg)-Tyr<c-2J>/J | Jackson Labs, Bar Harbor, Maine, USA | 000058 | |
Swiss Webster mice | Taconic, USA | Tac:SW | |
Injection Dish | MatTek Corp. | P50G-0-30-F |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved