A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The hydraulic capacitance of biomass is a key component of the vegetation water budget, which serves as a buffer against short and long-term drought stresses. Here, we present a protocol for the calibration and use of soil moisture capacitance sensors to monitor water content in the stems of large trees.
Water transport and storage through the soil-plant-atmosphere continuum is critical to the terrestrial water cycle, and has become a major research focus area. Biomass capacitance plays an integral role in the avoidance of hydraulic impairment to transpiration. However, high temporal resolution measurements of dynamic changes in the hydraulic capacitance of large trees are rare. Here, we present procedures for the calibration and use of capacitance sensors, typically used to monitor soil water content, to measure the volumetric water content in trees in the field. Frequency domain reflectometry-style observations are sensitive to the density of the media being studied. Therefore, it is necessary to perform species-specific calibrations to convert from the sensor-reported values of dielectric permittivity to volumetric water content. Calibration is performed on a harvested branch or stem cut into segments that are dried or re-hydrated to produce a full range of water contents used to generate a best-fit regression with sensor observations. Sensors are inserted into calibration segments or installed in trees after pre-drilling holes to a tolerance fit using a fabricated template to ensure proper drill alignment. Special care is taken to ensure that sensor tines make good contact with the surrounding media, while allowing them to be inserted without excessive force. Volumetric water content dynamics observed via the presented methodology align with sap flow measurements recorded using thermal dissipation techniques and environmental forcing data. Biomass water content data can be used to observe the onset of water stress, drought response and recovery, and has the potential to be applied to the calibration and evaluation of new plant-level hydrodynamics models, as well as to the partitioning of remotely sensed moisture products into above- and belowground components.
Water stored in plant material plays an integral role in plants' ability to cope with short- and long-term water stress1,2. Plants store water in roots, stems, and leaves in both intracellular and extracellular (e.g., xylem vessels) spaces 2,3,4. This water has been shown to contribute between 10 and 50% of diurnally transpired water2,5,6,7,8. As such, plant hydraulic capacitance is a key component of the terrestrial water balance, can be used as an indicator of water stress, drought response, and recovery1, and is a critical factor necessary to correct for observed time lags between transpiration and sap flow9,10,11. Real-time monitoring of vegetation water content can also be used in agricultural applications to help constrain orchard and crop irrigation in order to increase watering efficiency12,13. However, measurements of continuous, in-situ stem-water content of woody species7,14,15,16,17,18,19 are rare relative to sap flux measurements20. Here, we outline a procedure for the calibration of capacitance sensors to monitor the volumetric water content within the stems of trees5,21.
Hydrodynamic behaviors and water-use regulation by vegetation are an integral component of the soil-plant-atmosphere continuum22,23 and are therefore important controls for the water and carbon fluxes between the biosphere and atmosphere24,25. The dynamics of stem water content are influenced by both biotic and abiotic factors. Depletion and recharge of stem-stored water are affected by short- and long-term trends in environmental conditions, in particular, vapor pressure deficit and soil water content1,26. The physical properties of the wood27 (e.g., density, vessel structure) and the emergent hydraulic strategy25 (e.g., iso- or anisohydric stomatal regulation) determine a plant's ability to store and use water19,26,28, and can vary widely by species29,30. Previous studies have demonstrated different roles of capacitance in tropical16,27,31,32,33 and temperate5,7,21 species, and in both angiosperms1,2,34 and gymnosperms6,11,17,19.
Improved knowledge of biomass water content will improve understanding of vegetation strategies for water acquisition and use1,2, along with species' vulnerability to predicted changes in precipitation regimes35,36. Further understanding of plant water use strategies will help predict shifting demographic patterns under future climate scenarios37,38. Through model-data fusion techniques39, stem water content data obtained using this methodology can be used to inform and test scalable, plant-level hydrodynamics models40,41,42,43,44 in order to improve calculations of stomatal conductance and, thereby, simulations of both transpiration and photosynthetic carbon uptake. These advanced hydrodynamic models may provide a significant reduction in uncertainty and error when incorporated into larger land-surface and Earth systems models25,45,46,47,48.
Methods used to monitor or calculate stem water content include tree coring33,49, electronic dendrometers2,15,50, electrical resistance51, gamma radiation attenuation52, deuterium tracers19, networks of sap flux sensors32,33,53, stem psychrometers49, and amplitude11 and time4,12,13 domain reflectometry (TDR). Recent efforts have tested the viability of capacitance sensors that have traditionally been used to measure soil volumetric water content5,18,21,27. Frequency domain reflectometry (FRD)-style capacitance sensors are low cost and use relatively small amounts of energy for continuous measurements, making them an attractive tool for high temporal resolution measurements in field scenarios. The ease of automation of FDR over TDR-style sensors facilitates the collection of continuous sun-hourly data sets, and eliminates many of the challenges inherent in TDR measurements requiring substantial cable lengths13. The use of in-situ capacitance sensors eliminates the need for repetitive coring or branch harvesting, and may provide enhanced accuracy for hardwood species. Woody species that withdraw water principally from extracellular spaces, such as xylem vessels, or have high wood or bark moduli of elasticity, are generally not good candidates for popular dendrometer measurement techniques due to low elastic stem expansion2. Capacitance sensors estimate dielectric permittivity, which can be directly converted to volumetric water content. However, capacitance measurements are sensitive to the density of the media surrounding the sensor. Therefore, we advocate for species-specific calibrations that convert the output of the sensors to volumetric wood-water content5,21.
We present a protocol for a species-specific calibration to convert capacitance sensor output to volumetric water content of wood. Also provided are instructions for field installation of capacitance sensors in mature trees and a discussion of the method's strengths, weaknesses, and assumptions. These techniques are designed to monitor volumetric water content in the trunk, the largest tree water storage reservoir8, but can be easily expanded to the whole tree with installation of additional sensors along the branches. Measurements of dynamic plant water content will advance the fields of vegetation hydrodynamics, biometeorology, and land-surface modeling.
1. Select a Tree for Instrumentation
2. Harvest and Prepare Wood Samples of All Species of Interest to Generate a Species-Specific Calibration
3. Create a Calibration Relationship between Sensor Output and Volumetric Water Content
Figure 1: Example calibration curves. Calibration curves generated for Quercus rubra, Acer rubrum, Betula papyrifera, Populus grandidentata, and Pinus strobus following Parts 1 and 2 of this protocol. Equations and coefficients of determination are provided for each in Table 1. Please click here to view a larger version of this figure.
m | b | R2 | |
B. paprifera | 0.048 | -0.098 | 0.967 |
A. rubrum | 0.067 | -0.158 | 0.853 |
Q. rubra (shortened) | 0.120 | 0.041 | 0.636 |
Q. rubra | 0.058 | -0.109 | 0.718 |
P. grandidentata | 0.023 | -0.028 | 0.887 |
P. strobus | 0.030 | -0.072 | 0.900 |
Table 1: Calibration equations for the conversion of εb to VWC for five temperate tree species. Coefficients 'm' and 'b' are presented for a linear equation in the standard form: VWC = m*εb+b.
4. Installing Capacitance Sensors in Trees for Field Measurements
Figure 2: Example field experiment setup. A schematic diagram of sensor locations and orientation in a mature tree adjacent to a data logging station. Please click here to view a larger version of this figure.
5. Process the Raw Data to Stem-Water Storage Using the Calibration Curve
In this section, we present calibration data for five common eastern forest tree species, followed by a detailed analysis of field measurements of stem-water storage in three Acer rubrum individuals during the 2016 growing season. Calibration curves were generated for Acer rubrum, Betula papyrifera, Pinus strobus, Populus grandidentata, and Quercus rubra (Figure 1). Slopes of the curves differed by as much as 97.7% for P. grandi...
Seasonal and diurnal patterns in stem water content observed via capacitance sensors align with trends in concurrent sap flux and environmental forcing measurements (Figure 3, Figure 4, Figure 5). Reservoirs of stem water storage are depleted diurnally when the pace of transpiration surpasses the rate of recharge through woody tissues, and seasonally when soil moisture limits root-water availability...
Steven R. Garrity is an employee of METER Group Inc. that produces the GS3 Ruggedized Soil Moisture Sensor used in this Article.
Funding for this study was provided by U.S. Department of Energy's Office of Science, Office of Biological and Environmental Research, Terrestrial Ecosystem Sciences Program Award No. DE-SC0007041, Ameriflux Management program under Flux Core Site Agreement No. 7096915 through Lawrence Berkeley National Laboratory, and the National Science Foundation Hydrological Science grant 1521238. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies.
Name | Company | Catalog Number | Comments |
Ruggedized Soil Moisture Sensor | METER Group Inc. | GS-3 | Capacitance sensors |
1/8" drill bit | Any | N/A | |
9/64" drill bit | Any | N/A | |
Drying oven | Any | N/A | |
Chainsaw | Any | N/A | |
Electric drill | Any | N/A | |
Bucket for water bath | Any | N/A | |
Alcohol swabs | Any | N/A | |
Draw knife | Any | N/A | |
Data logger | Any | N/A | |
Silicon sealant | Any | N/A |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved