A subscription to JoVE is required to view this content. Sign in or start your free trial.
This study presents a protocol for the reversible tissue clearing, immunostaining, 3D-rendering and analysis of vascular networks in human placenta villi samples on the order of 1 - 2 mm3.
Nutrient and gas exchange between mother and fetus occurs at the interface of the maternal intervillous blood and the vast villous capillary network that makes up much of the parenchyma of the human placenta. The distal villous capillary network is the terminus of the fetal blood supply after several generations of branching of vessels extending out from the umbilical cord. This network has a contiguous cellular sheath, the syncytial trophoblast barrier layer, which prevents mixing of fetal blood and the maternal blood in which it is continuously bathed. Insults to the integrity of the placental capillary network, occurring in disorders such as maternal diabetes, hypertension and obesity, have consequences that present serious health risks for the fetus, infant, and adult. To better define the structural effects of these insults, a protocol was developed for this study that captures capillary network structure on the order of 1 - 2 mm3 wherein one can investigate its topological features in its full complexity. To accomplish this, clusters of terminal villi from placenta are dissected, and the trophoblast layer and the capillary endothelia are immunolabeled. These samples are then clarified with a new tissue clearing process which makes it possible to acquire confocal image stacks to z- depths of ~1 mm. The three-dimensional renderings of these stacks are then processed and analyzed to generate basic capillary network measures such as volume, number of capillary branches, and capillary branch end points, as validation of the suitability of this approach for capillary network characterization.
Our understanding of the developing placenta and its pathologies is, in large measure, limited to inferred spatial relationships between adjacent villi and contained capillaries derived from histological sections. In this study, we have addressed this issue by developing the means to generate three-dimensional (3D) renderings of human placental capillary networks that are suitable for analyses of capillary network features (e.g. branching, solidity). To do this we have combined immunofluorescent staining with two commercial tissue clearing products, Visikol-1 and Visikol-2 (referred to below as Solution-1 and Solution-2).
The human placenta is a vast complex of blood vessels located at the interface between the mother's intervillous blood and the developing fetus. Extending out from its insertion into the chorionic plate, the umbilical cord branches into a network of arteries and veins that ramify to cover the chorionic surface with an elaborate vascular network. Their ends then penetrate down into the interior or depth of the placental disk where they undergo several more branching generations and end in the terminal villi and their contained capillary networks, the site of the exchange of gases, nutrients, and metabolic waste between fetal and maternal blood.
Insults to the placental capillary network during development have lasting consequences for the health of the fetus, newborn infant and the emergent adult 1,2,3. In view of pregnancy-related pathologies such as miscarriage, intrauterine growth restriction, pre-eclampsia and maternal diabetes 4,5,6 there is a high value placed on developing methods of measurement and characterization of placental villous capillary networks. A major roadblock is that placental vascular networks encompass a broad range of scale. The surface vascular networks can be as great as 4-5 mm in diameter. The terminal villous capillaries are on the order of 10 -20 µm in diameter; the placenta contains over 300 km of blood vessels 7. At present, there are few easy to use and rapid techniques that can capture these extremes of vessel scale. To date, only a small number of villi can be rendered by microscopy. For example, Jirkovska et al. focused on the placental villus at term, combining confocal microscopy with serial optical sections at 1 µm intervals obtained from 120 µm thick sections; no data on the number of samples studied nor statistics were provided 8. Capillary structures were identified, and contours of villi and capillaries were hand-drawn, with tracings exported for image analysis. While the authors discuss the implications of their findings for the "growing villous vascular network", such conclusions are problematic when only "term" (36+ week gestational age) tissue is studied. Similarly, Mayo et al. and Pearce et al. relied on the tissue of the same age, for their simulations of blood flow and oxygen transfer, but their analyses were limited to only a few term, terminal villi 9,10. Stereology has also been applied to the study of the structure of villous vessels. But again, the focus has generally been on later pregnancies delivering liveborn infants with one or more pregnancy complications 11,12.
Until recently, confocal microscopy was limited to imaging to tissue depths of 100-200 µm because of absorption of the excitation and emission of the fluorescence by the overlying tissue 13 . Though tissue clearing and 3D histology have been widely described in the literature and there are numerous methods for tissue clearing many are unsuitable for use with tissues in general, as they irreversibly damage cellular morphology through the hyperhydration of proteins or removal of lipids. Therefore, it is not possible to validate that these results are indicative of the tissue itself and not artifacts from processing whereas our tissue clearing process is a reversible technique that is able to validate against traditional histology. Tissue clearing generally involves one of three major approaches: 1) uniform matching of the refractive index (RI) of tissue components by submersion in RI matching solutions, which removes the cumulative light scattering caused from lensing due to continuous fluctuation of low RI (cytosol) and high RI (protein/lipids) constituents; 2) removing lipid components by way of embedding into hydrogel and utilizing electrophoresis/diffusion to remove lipid components; 3) expansion/denaturation of protein structure to allow increased penetration of solvents to encourage uniformity of RI 13. While these approaches can render tissues transparent and allow for 3D representations of biomarkers to be generated, these 3D representations are of questionable clinical value as it is challenging to determine if these images are indicative of tissue properties or of the tissue clearing process. On the other hand, since our tissue clearing is reversible standard histological and/or immunohistochemistry can be applied to the same tissue to evaluate whether the alterations are clinically significant.
This study presents an analysis of 47 distal villous samples obtained from a total of 23 clinically normal and electively terminated pregnancies between 9-23 completed weeks' gestation and two full-term normal deliveries. Immunofluorescence labeling of trophoblast and endothelia has enabled a quantitative and automated analysis of changes in the villous vascular networks and their complexity.
With this protocol, we isolated and analyzed terminal villi and their capillary networks on a scale not possible previously. This approach, when applied to villous and capillary network development across gestation will identify those properties that are the foundation for the birth of a healthy child. When applied to studies of complicated pregnancies, it will also clarify when and how the placental pathologies modify the villous trees and the capillary networks they sheath, and how these impinge on fetal well-being.
This protocol follows the guidelines of New York State Institute for Basic Research in Developmental Disabilities human research ethics committee.
1. Villous Tree Dissection
2. Immunofluorescent Staining
3. Clarification of the Tissue
4. Mounting for Microscopy
5. Confocal Microscopy
6. Reversing the Clearing
7. Deconvolution
NOTE: For the following steps, software Commands, Tabs and drop-down menus are italicized.
8. Image Processing
9. Analysis
The generated 3D renderings of the capillaries in clusters of terminal villi in human placenta from 8 weeks gestational age to term delivery were counted as individual clusters and skeletonized for network analysis. The functional units of the placenta (Figure 1A) are the villus trees that are an extension of surface vessels where they have penetrated the placenta parenchyma (Figure 1B, and enlar...
The Institutional Review Board approved the collection of placental villous tissues for formalin fixation from electively terminated pregnancies. Before the procedures were performed, a brief review of the medical record noted maternal age, parity, and confirmed the absence of any underlying medical (e.g., hypertension, diabetes, and lupus) or fetal (structural or chromosomal anomalies, abnormal growth) was performed. The data sheet and any collected specimens were labeled only with a Study ID. Thus, all the spe...
The authors have nothing to disclose.
This work was supported by the New York State Office for People with Developmental Disabilities and Placental Analytics LLC, New Rochelle, NY.
Name | Company | Catalog Number | Comments |
10% Formaldehyde solution (w/v) in aqueous phosphate buffer | Macron Fine Chemicals | H-121-08 | General fixation agent, ready to use formula, use caution as vapors are toxic |
Scalpel blades | ThermoFisher Scientific | 08-916-5B No. 11 | |
Scalpel | ThermoFisher Scientific | 08-913-5 | |
Fine forceps | Electron Microscopy Services | 78354-119 | |
Micro Tube (1.7 mL) | PGC Scientifics | 505-201 | |
Phosphate buffered saline | Sigma | D8537 | PBS |
Pipette | VWR | 52947-948 | disposable, 3ml transfer pipette |
Triton X-100 | Boehriner Mannheim | 789 704 | Dilute to 0.1% from stock |
Goat Serum | Gibco | 16210-064 | Dilute to 2% in PBS solution |
Mouse monoclonial anti-ck7 Keratin 7 Ab-2 (Clone OV-TL 12/30) | ThermoFisher Scientific | MS-1352-RQ | |
Rabbit Anti-CD31 antibody | Abcam | ab28364 | |
green emitting (520 nm) fluorochrome | Invitrogen | A11017 | Alexa-Fluor 488 |
infrared emitting (652 nm) fluorochrome | Invitrogen | A21072 | Alexa Fluor 633 |
Ethanol alcohol 200 proof | Pharmco-Aaper | 111000200 | Dilute down to lower concentrations using PBS as needed |
Solution-1 | Visikol Inc. | Visikol Histo-1 | |
Solution-2 | Visikol Inc. | Visikol Histo-2 | |
Skyes-Moore chambers | BellCo Glass Inc. | P/N 1943-11111 | |
25 gauge needle | ThermoFisher Scientific | 14-826AA | BD Precision Glide Needes |
3 mL syringe | ThermoFisher Scientific | 14-823-40 | BD disposable syringe |
PDMS silicon sheets | McMaster-Carr | P/N 578T31 | |
confocal microscope | Nikon Inc. | Nikon C1 Confocal Microscope | |
Deconvolution software | Media Cybernetics | AutoQuant X22 | |
Fiji image processing software | free, Open source software available at https://fiji.sc | ||
Hematoxylin | Leica Biosystems | 3801570 | Component 1 of SelecTech H&E staining system |
Alcoholic Eosin | Leica Biosystems | 3801615 | Component 2 of SelecTech H&E staining system |
Blue Buffer | Leica Biosystems | 3802918 | Component 3 of SelecTech H&E staining system |
Aqua Define MCX | Leica Biosystems | 3803598 | Component 4 of SelecTech H&E staining system |
Immunohistochemistry detection system | ThermoFisher Scientific | TL-125-QHD | UltraVision Quanto Detection System HRP DAB |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved