A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The protocol describes how to engineer a perfusable vascular network in a spheroid. The spheroid's surrounding microenvironment is devised to induce angiogenesis and connect the spheroid to the microchannels in a microfluidic device. The method allows the perfusion of the spheroid, which is a long-awaited technique in three-dimensional cultures.
A spheroid (a multicellular aggregate) is regarded as a good model of living tissues in the human body. Despite the significant advancement in the spheroid cultures, a perfusable vascular network in the spheroids remains a critical challenge for long-term culture required to maintain and develop their functions, such as protein expressions and morphogenesis. The protocol presents a novel method to integrate a perfusable vascular network within the spheroid in a microfluidic device. To induce a perfusable vascular network in the spheroid, angiogenic sprouts connected to microchannels were guided to the spheroid by utilizing angiogenic factors from human lung fibroblasts cultured in the spheroid. The angiogenic sprouts reached the spheroid, merged with the endothelial cells co-cultured in the spheroid, and formed a continuous vascular network. The vascular network could perfuse the interior of the spheroid without any leakage. The constructed vascular network may be further used as a route for supply of nutrients and removal of waste products, mimicking blood circulation in vivo. The method provides a new platform in spheroid culture toward better recapitulation of living tissues.
Shifting from a monolayer (two-dimensional) culture to a three-dimensional culture is motivated by the need to work with culture models that mimic the cellular functions of living tissues1,2,3. Flat and hard plastic substrates commonly used in cell culture do not resemble most of the extracellular environments in the human body. In fact, many studies demonstrate that three-dimensional culture recreate tissue-specific architecture, mechanical and biochemical cues, and cell-cell communication, which have not been observed in conventional two-dimensional culture4,5,6,7,8.
A multicellular aggregate or spheroid, is one of the most promising techniques to realize this three-dimensional culture9,10. Cells secrete the extracellular matrix (ECM) and can interact with others in the spheroid. Although some other bioengineering approaches11,12,13,14, such as cell stacking, successfully replicate spatial complexity of the human body, these approaches have only two or three kinds of cells for the ease of analysis and focused on only one function of target organs. In contrast, cells in spheroids are exposed to different culture environments depending on their positions in the spheroid due to the heterogeneous supply of nutrients, oxygen, and paracrine and autocrine signaling molecules in the spheroid. This feature of spheroids partially mimics in vivo culture condition and enable the cells in spheroids to create much more complex, organized tissue structure in vitro than those cultured in stacking tissue9,15,16. Note that if a spheroid is comprised of a single kind of cells, the function of the cells in the spheroid is not uniform due to the heterogeneous environment in the spheroid. In the past few years, spheroid cultures allowed embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) or tissue-resident stem cells to mimic in vivo developmental sequences and recreate mini-organs such as the brain17, liver18and kidney19,20.
Despite significant progress in spheroid culture techniques, culturing large spheroids for a long time is still problematic. In a three-dimensional tissue, cells need to be located within 150-200 µm of a blood vessel because of the limited supply of oxygen and nutrients21. Vascular networks within the spheroid are necessary to recapitulate exchanging substances between blood and tissues in vivo. To achieve this, other groups have co-cultured endothelial cells with target cells22,23,24 or induced the differentiation of pluripotent cells into CD31-positive cells20. Nevertheless, the reported vessel-like structures do not have the open ends of the lumina to supply oxygen and nutrients to the center of the spheroid. To mimic the vascular role to nourish cells in the three-dimensional culture, open-ended and perfusable vascular network must be developed in the spheroid.
During the past few years, some research groups in the microengineering field reported methods to construct a perfusable vascular network, spontaneously formed in a microfluidic device by utilizing angiogenic factors from cocultured fibroblast cells25,26. These vascular networks have a similar morphology to their in vivo counterparts and can be remodeled by environmental factors, making them suitable for mimicking vascular functions in a spheroid culture. The purpose of this protocol is to construct a perfusable vascular network in a spheroid using a microfluidic platform27. The microfluidic device is modified from the previously reported device25 so that a spheroid can be incorporated. By directing the angiogenic secretion from fibroblast cells in a spheroid to endothelial cells in microchannels, angiogenic sprouts from the microchannels anastomosed with the spheroid and formed a perfusable vascular network. This method allows a direct delivery of a wide range of substances, such as fluorescent molecules and micrometer-scale beads into the interior of a spheroid, which provides the framework for a long-term tissue culture with vascular networks.
Access restricted. Please log in or start a trial to view this content.
1. Fabrication of the Microfluidic Device Mold
2. Fabrication Steps and the Assembly of PDMS Layers
3. Spheroid Preparation
NOTE: In the study, red fluorescent protein expressing human umbilical vein endothelial cells (RFP-HUVECs) and green fluorescent protein expressing HUVECs (GFP-HUVECs) are used in the spheroid and microchannels, respectively, to distinguish the origin of HUVECs after the construction of a perfusable vascular network. If the origin of HUVECs is not needed, unlabeled HUVECs are enough for the experiment.
4. Cell Seeding in the Microfluidic Device
Note: The naming convention for the holes, channels and the spheroid well are demonstrated in Figure 1. We define day 0 as the day when cell harvesting into the microfluidic device is finished. Schematic of the experimental timelines is shown in Figure 2.
5. Nuclei Staining
6. Fluid Perfusion of a Spheroid
7. Quantification of Sprout Length
NOTE: ImageJ ver. 1.49 software is used for all of analysis of the image in this study.
8. Quantification of Vascular Angles
NOTE: Vascular angle was defined as the angle consisted by vascular angle, root and the center of the spheroid (Figure 7c).
Access restricted. Please log in or start a trial to view this content.
Figure 1 shows a design and photo of the microfluidic device. It has three parallel channels, in which channel 2 contains the spheroid well. Channels 1 and 3 are used for the HUVEC culture and channel 2 is for the spheroid. Each channel is separated by trapezoidal microposts designed to pattern PDMS. The microposts prevent the hydrogel in channel 2 from leaking into channels 1 and 3 by surface tension and allow exchanging substances between the spheroid and H...
Access restricted. Please log in or start a trial to view this content.
Previous reports show that hLFs secrete a cocktail of multiple angiogenic factors, such as angiopoietin-1, angiogenin, hepatocyte growth factor, transforming growth factor-α, tumor necrosis factor and some extracellular matrix proteins29,30. This assay relies on the angiogenic secretion from hLFs in a coculture spheroid, which is the limitation of the technique. Therefore, it is critical for a stable vascular formation to set a coculture spheroid at the bott...
Access restricted. Please log in or start a trial to view this content.
The author declare that they have no competing financial interests.
This work was supported by CREST JST (grant number JPMJCR14W4), Society for the Promotion of Science (JSPS) KAKENHI (grant number 25600060, 16K16386), The Center of Innovation Program from MEXT and JST, Project Focused on Developing Key Evaluation Technology from Japan Agency for Medical Research and Development, AMED, Mizuho Foundation for the Promotion of Sciences. Microfabrication was supported by Kyoto University Nano Technology Hub.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
AutoCAD 2017 | Autodesk | AutoCAD 2017 | |
A chromium mask coated with AZP 1350. | CLEAN SURFACE TECHNOLOGY | CBL2506Bu-AZP | |
Micro pattern generator | Heidelberg | uPG101 | |
MF CD-26 developer | Rohm and haas electronic materials | - | Developer in protocol 1.4 |
S-Clean | Sasaki Chemical | S-24 | Chromium etchant in protocol 1.5 |
Aceton | Wako | 012-00343 | |
Silicon Wafer | Canosis | SiJ-4 | |
Spin Coater | MIKASA | 1H-D7 | |
Hexamethyldisilazane (HMDS) | Tokyo Ohka Kogyo | H0089 | |
SU-8 3050 | MicroChem | - | Negative photoresist in protocol 1.9 |
UV Exposure | Nanometric Technology Inc | LA310s | |
SU-8 Developer | MicroChem | Y020100 | Developer for the negative photoresist in protocol 1.13 |
2-propanol | Wako | 163-04841 | |
Surface profiler | Veeco | Veeco Dektak XT-S | |
(Trichloro (1H, 1H, 2H, 2H-perfluorooctyl) silane | Sigma | 448931 | |
Polydimethylsiloxane (PDMS) | Dow Corning Toray | 184W/C | |
Biopsy Punch (1.0mm) | Kai Industries | BP-10F | |
Biopsy Punch (2.0mm) | Kai Industries | BP-20F | |
Plasma System | Femto Science | COVANCE | |
Cover glass | MATSUNAMI GLASS | C024241 | |
Culture Dishes | Iwaki | 1000-035 | |
RFP Expressing Human Umbilical Vein Endothelial Cell | Angio Proteomie | cAP-0001RFP | |
Normal Human Lung Fibroblasts | Lonza | CC-2512 | |
Endothelial Cell Growth Medium | Lonza | CC-3162 | |
Fibroblast Growth Media Kits | Lonza | CC-3132 | |
DMEM | Thermo Fisher Scientific | 11965092 | |
Fetal Bovine Serum | Thermo Fisher Scientific | 26140079 | |
Penicillin-Streptomycin Solution | Wako | 168-23191 | |
0.05w/v% Trypsin-0.53mmol/l EDTA• 4Na Solution with Phenol Red | Wako | 204-16935 | |
PBS (Phosphate Buffered Salts) | Takara bio | T900 | |
96-well plate | Sumitomo bakelite | 631-21031 | |
1000ul Chip | NIPPON Genetics | FG-402 | |
200ul Chip | NIPPON Genetics | FG-301 | |
10ul Chip | NIPPON Genetics | 37650 | |
CO2 incubator | Thermo Fisher Scientific | Model 370 | |
GFP Expressing Human Umbilical Vein Endothelial Cell | Angio Proteomie | cAP-0001GFP | |
Fibrinogen from bovine plasma | Sigma | F8630 | |
Aprotinin from bovine lung | Sigma | A6279 | |
Collagen I | Corning | 354236 | |
Thrombin from bovine plasma | Sigma | T4648 | |
Hoechst 33342 | Invitrogen | H21492 | Fluorescent dye to stain nuclei in protocol 5.5 |
Paraformaldehyde Solution | Wako | 163-25983 | |
Inverted Fluorescence Microscope | OLYMPUS | IX71 | |
Degital CCD Camera | OLYMPUS | ORCA-R2 | |
Confocal Laser Scanning Biological Microscope | OLYMPUS | FV1000 | |
Inverted Fluorescence Microscope | OLYMPUS | IX-83 | |
Fluorescein isothiocyanate-dextran | Sigma | FD70S |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved