JoVE Logo

Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Results
  • Discussion
  • Disclosures
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

Here, we describe a simple, non-invasive approach using near-infrared spectroscopy to assess reactive hyperemia, neurovascular coupling and skeletal muscle oxidative capacity in a single clinic or laboratory visit.

Abstract

Exercise represents a major hemodynamic stress that demands a highly coordinated neurovascular response in order to match oxygen delivery to metabolic demand. Reactive hyperemia (in response to a brief period of tissue ischemia) is an independent predictor of cardiovascular events and provides important insight into vascular health and vasodilatory capacity. Skeletal muscle oxidative capacity is equally important in health and disease, as it determines the energy supply for myocellular processes. Here, we describe a simple, non-invasive approach using near-infrared spectroscopy to assess each of these major clinical endpoints (reactive hyperemia, neurovascular coupling, and muscle oxidative capacity) during a single clinic or laboratory visit. Unlike Doppler ultrasound, magnetic resonance images/spectroscopy, or invasive catheter-based flow measurements or muscle biopsies, our approach is less operator-dependent, low-cost, and completely non-invasive. Representative data from our lab taken together with summary data from previously published literature illustrate the utility of each of these end-points. Once this technique is mastered, application to clinical populations will provide important mechanistic insight into exercise intolerance and cardiovascular dysfunction.

Introduction

The hyperemic response to a brief period of tissue ischemia has emerged as a key non-invasive measure of (micro)vascular function. During occlusion of a conduit artery, downstream arterioles dilate in an effort to offset the ischemic insult. Upon release of the occlusion, the decreased vascular resistance results in hyperemia, the magnitude of which is dictated by one's ability to dilate the downstream microvasculature. While reactive hyperemia is a strong independent predictor of cardiovascular events1,2 and therefore a clinically significant endpoint, its functional significance to exercise tolerance and quality of life is less clear.

Indeed, dynamic exercise represents a major cardiovascular stress that demands a highly coordinated neurovascular response in order to match oxygen delivery to metabolic demand. For example, skeletal muscle blood flow can increase nearly 100-fold during isolated muscle contractions3, which would overwhelm the pumping capacity of the heart if such a hemodynamic response were extrapolated to whole-body exercise. Accordingly, to avoid severe hypotension, sympathetic (i.e., vasoconstrictor) nervous activity increases to redistribute cardiac output away from inactive and visceral tissues and towards active skeletal muscle4. Sympathetic outflow is also directed to the exercising skeletal muscle5; however, local metabolic signaling attenuates the vasoconstrictor response in order to ensure adequate tissue oxygen delivery6,7,8,9,10,11. Collectively, this process is termed functional sympatholysis12, and is imperative to the normal regulation of skeletal muscle blood flow during exercise. Since skeletal muscle blood flow is a key determinant of aerobic capacity — an independent predictor of quality of life and cardiovascular disease morbidity and mortality13— understanding the control of skeletal muscle blood flow and tissue oxygen delivery during exercise is of great clinical significance.

Oxygen delivery is only half of the Fick equation, however, with oxygen utilization satisfying the other half of the equation. Among the major determinates of oxygen utilization, mitochondrial oxidative phosphorylation plays an essential role in supplying adequate energy for cellular processes both at rest and during exercise. Indeed, impairments in muscle oxidative capacity can limit functional capacity and quality of life14,15,16. Various measures are commonly used to provide an index of muscle oxidative capacity, including invasive muscle biopsies and expensive and time-consuming magnetic resonance spectroscopy (MRS) techniques.

Here, we propose a novel, non-invasive approach, using near-infrared spectroscopy (NIRS), to assess each of these three major clinical endpoints (reactive hyperemia, sympatholysis, and muscle oxidative capacity) in a single clinic or laboratory visit. The major advantages of this approach are three-fold: First, this technique is easily portable, relatively low cost, and easy to perform. Current Doppler ultrasound approaches for measuring reactive hyperemia are highly operator-dependent — requiring extensive skill and training — and require sophisticated, high-cost, data acquisition hardware and post-processing software. Moreover, this could conceivably be introduced into the clinic and/or large clinical trials for bedside monitoring or testing therapeutic efficacy. Second, by virtue of the methodology, this technique focuses specifically on the skeletal muscle microvasculature, increasing the overall specificity of the technique. Alternative approaches using Doppler ultrasound focus entirely on upstream conduit vessels and infer changes downstream, which can dampen the signal. Third, this technique is completely non-invasive. Skeletal muscle oxidative capacity is traditionally assessed with invasive and painful muscle biopsies, and functional sympatholysis may be assessed with intra-arterial injection of sympathomimetics and sympatholytics. This approach avoids these requirements all together.

Access restricted. Please log in or start a trial to view this content.

Protocol

This protocol follows the guidelines of the institutional review board at the University of Texas at Arlington and conforms to the standards set by the latest version of the Declaration of Helsinki. Accordingly, written informed consent was (and should be) obtained prior to commencement of research procedures.

1. Instrumentation

NOTE: The following instrumentation description is based on the near-infrared (NIR) spectrometer and data acquisition system used in our lab (see Table of Materials). Thus, the instructions include steps that are necessary for the optimal function of these devices. These steps include the calibration of the NIR probe using the accompanying software and calibration phantom, and the application of a dark cloth to exclude ambient light. In the event that different data collection hardware and/or software are used, investigators should consult their own specific user manuals for calibration and ambient light considerations. Figure 1 illustrates the experimental set-up and instrumentation described immediately below.

  1. Instruct the subject to lie supine with their legs inside a lower body negative pressure (LBNP) chamber (Figure 1A), so that their belt line is approximately even with the opening to the LBNP box. For instructions on how to build a LBNP chamber, see References17.
  2. Place three electrocardiogram electrodes on the subject: two in an inferior, mid-clavicular location and one on the subject's left side medial to the iliac crest. This configuration provides the best results due to limited access to the lower limbs, instrumentation of the upper limbs, and arm movement during hand grip exercise.
  3. Place a non-invasive blood pressure monitor module on the subject's dominant wrist. Place the finger blood pressure cuffs on each finger and connect them to the module (Figure 1B). Ensure the finger blood pressure cuffs are properly calibrated according to the user's manual accompanying your device.
  4. Instruct the subject to grasp a hand grip dynamometer (HGD) with their non-dominant arm in a slightly abducted position. The arm should be comfortably positioned on a bedside table. The distance and angle of the HGD should be adjusted to allow for optimal grip strength with minimal arm movement (Figure 1C).
  5. Secure the HGD to a bedside table.
  6. Measure the maximum voluntary contraction (MVC) of the participant. Tell the participant that, when prompted, they must squeeze the HGD as hard as possible while only utilizing the muscles in the hand and forearm. Instruct the subject that they must refrain from recruiting their upper arm, chest, shoulder, or abdominal muscles when performing the maximum grip.
  7. Repeat Step 1.6 three times, separated by at least 60 s. Record the maximum force achieved (best of 3). This maximum force will be used to calculate the exercise intensity for skeletal muscle oxidative capacity and neurovascular coupling (below).
  8. Place a rapid-inflation cuff around the upper arm of the exercising hand. Connect the airline from the rapid inflation controller to the cuff.
  9. Identify the flexor digitorum profundus. Use a skin marker to demarcate the borders of the palpable muscle.
  10. Ensure that the NIR spectrometer is properly calibrated according to the user's manual included with your device. Clean the skin over which the NIR probe will be positioned with an alcohol prep wipe.
  11. Place the NIR probe over the center of the belly of the muscle (flexor digitorum profundus) and affix it securely to the forearm.
  12. Wrap the probe and forearm with dark cloth, minimizing interference from ambient light (Figure 1C, Figure 1D).
  13. When ready to perform the functional sympatholysis portion of the study, seal the subject into the LBNP chamber.

2. Skeletal Muscle Oxidative Capacity

NOTE: A representative data tracing illustrating the experimental procedure for measuring skeletal muscle oxidative capacity is depicted in Figure 2. This experimental approach has previously been validated against in vivo phosphorus MRS18 and in situ muscle respirometry19, and is gaining widespread acceptance20.

  1. Instrument the subject as indicated above (Instrumentation).
  2. Instruct the subject to lie still for 2 min while monitoring deoxyhemoglobin (HHb) and oxyhemoglobin (HbO2) via the NIR probe.
    NOTE: This rest period allows the subject to recover from any movement artifact associated with the instrumentation process, and ensures stable baseline measurements. If after 2 min no significant fluctuations have occurred, the subject may be considered at a steady state, or resting baseline.
  3. Prior to cuff occlusion, notify your subject that you will be inflating the cuff. Inflate the upper arm cuff at least 30 mmHg above systolic blood pressure for 5 min (i.e., suprasystolic). Instruct the subject to keep their arm as still and relaxed as possible both during cuff inflation and following cuff deflation.
    NOTE: This 5 min brachial artery cuff occlusion protocol closely reflects the currently accepted clinical standard for vascular occlusion tests21,22,23,24,25.
  4. Record the initial/baseline value (prior to cuff occlusion) and the nadir value of tissue saturation (StO2) during the cuff occlusion and determine the midpoint between these two values.
    figure-protocol-6087
  5. Allow the subject to recover from the cuff occlusion and return to the resting baseline values. Once the subject has maintained a resting baseline for at least 1 full min, continue to the next step.
  6. Instruct subject to squeeze and maintain an isometric hand grip at 50% of their MVC. Encourage the subject to maintain their isometric contraction until the tissue desaturates by 50%. Upon achieving this value, tell the subject to relax their hand and inform them that no more exercise or movement is needed.
  7. Within 3 - 5 s following exercise cessation, administer the following rapid cuff occlusion series (one series = 1 inflation + 1 deflation), as previously established18:
    Series #1 - 6: 5 s on/5 s off
    Series #7 - 10: 7 s on/10 s off
    Series #11 - 14: 10 s on/15 s off
    Series #15 - 18: 10 s on/20 s off
  8. After completing the 18th inflation/deflation series, instruct the subject to rest, allowing tissue saturation to return to initial baseline values. After these values have remained consistent for at least 2 min, repeat steps 2.4 and 2.5.
  9. Calculating Skeletal Muscle Oxidative Capacity
    1. Calculate the slope of change in the StO2for each of the individual 18 cuff occlusions, forming the monoexponential recovery points illustrated in Figure 2C.
    2. Fit the calculated data from 2.7 to the following monoexponential curve18,19,26
      y = End - Δ x e-kt
      NOTE: 'y' is the relative muscle oxygen consumption rate (mV̇O2) during cuff inflation, 'End' represents the mV̇O2 immediately following the cessation of exercise; delta ('Δ') signifies the change in mV̇O2 from rest to the end of exercise; 'k' is the fitting rate constant; 't' is time. Tau is calculated as 1/k.

3. Reactive Hyperemia

NOTE: A representative data tracing illustrating the experimental procedure for measuring reactive hyperemia is depicted in Figure 3.

  1. With the subject lying supine and instrumented as described above (Instrumentation), instruct the subject to lie as still as possible.
  2. Once the subject has achieved a consistent resting state, continue to record at least 1 min of baseline data and then rapidly inflate a blood pressure cuff on the upper arm to a suprasystolic pressure (30 mmHg above systolic blood pressure).
  3. At the 5 min mark, rapidly deflate the cuff while recording the hyperemic response.
  4. Continue recording for at least 3 min to capture the subject's recovery.
  5. Calculating Reactive Hyperemia
    NOTE: The NIRS parameters calculated are depicted in Figure 3.
    1. Calculate baseline StOas the average StOover 1 full min prior to the onset of arterial cuff occlusion.
    2. Determine the resting skeletal muscle metabolic rate as the desaturation rate (i.e., average slope) during cuff occlusion (defined as Slope 1)27,28.
    3. Calculate reactive hyperemia as follows:
      a) the average upslope following cuff release (i.e., reperfusion rate, defined as slope 2), calculated from the moment of cuff release through the linearly increasing phase of the rebound trace;
      b) the highest StOvalue reached after cuff release (denoted as StO2max);
      c) the reactive hyperemia area under the curve (AUC); calculated from the time of cuff release to 1-, 2- and 3-min post cuff-occlusion (AUC 1-min, AUC 2-min, and AUC 3-min, respectively); and
      d) the hyperemic reserve, calculated as the change in StOabove baseline and reported as a percent (%) change. This value is calculated as the highest saturation achieved during the post-occlusive rebound minus the average saturation calculated in step 3.5.1 (see above).
      NOTE: Large differences in baseline data will greatly affect the interpretation of the hyperemic reserve.

4. Functional Sympatholysis

NOTE: A representative data tracing illustrating the experimental procedure for measuring functional sympatholysis is depicted in Figure 4.

  1. Instrument the subject as indicated above (Instrumentation).
  2. Ensure an airtight seal in the LBNP chamber.
  3. With the subject lying still and at rest, collect 3 min of baseline data.
  4. At the 3 min mark, turn on the vacuum. Adjust the vacuum so that the pressure inside the LBNP chamber is between -20 and -30 mmHg. Allow the vacuum to run for 2 min while monitoring the subject's response.
  5. At the 5 min mark, turn off the vacuum and allow the subject to rest for 3 min.
  6. At the 8 min mark, initiate the voice prompt guiding the subject through the rhythmic hand grip exercise (20% MVC).
  7. Confirm that the subject is maintaining their squeeze throughout the entirety of each gripping phase and relaxing completely during between each repetition. Monitor their force output and confirm that they are achieving 20% MVC with each grip. Continue exercise until the 11 min mark.
  8. At the 11 min mark, turn on the vacuum encouraging the subject to continue their rhythmic exercise. Allow the vacuum to run from 11 - 13 min, then turn it off.
  9. Have the subject continue performing rhythmic hand grip exercise at 20% of their MVC for an additional 2 min. Upon exercise cessation, have the subject rest quietly and lie still.
  10. Calculating Functional Sympatholysis
    1. Normalize the change in oxyhemoglobin with LBNP to the total labile signal (TLS), determined during 5 min cuff occlusion:
      figure-protocol-12376
      figure-protocol-12452
    2. Calculate each event as the final 20 min average of each event.
    3. Calculate the exercise-induced attenuation of the oxyhemoglobin reduction:
      figure-protocol-12689

Access restricted. Please log in or start a trial to view this content.

Results

Skeletal muscle oxidative capacity

Figure 2 illustrates a representative participant response during a NIRS-derived skeletal muscle oxidative capacity assessment. Panel A shows the tissue saturation profile during a 5 min arterial cuff occlusion protocol, handgrip exercise, and intermittent arterial occlusion during recovery from exercise. Panel B illustrates the expected t...

Access restricted. Please log in or start a trial to view this content.

Discussion

The methods described herein enable non-invasive, clinical evaluation of reactive hyperemia, neurovascular coupling, and skeletal muscle oxidative capacity in a single clinic or laboratory visit.

Critical Considerations

Although NIRS is relatively robust and easy to use, collection of these data require careful placement of the optodes directly over the muscle belly, secured tightly in place to avoid movement artifact, and covered with a bl...

Access restricted. Please log in or start a trial to view this content.

Disclosures

The authors declare that they have no competing financial interests.

Acknowledgements

This work was supported by a University of Texas at Arlington Interdisciplinary Research Program grant.

Access restricted. Please log in or start a trial to view this content.

Materials

NameCompanyCatalog NumberComments
Dual-channel OxiplexTS Near-infrared spectroscopy machineIss Medical101
NIRS muscle sensorIss Medical201.2
E20 Rapid cuff inflation systemHokansonE20
AG101 Air SourceHokansonAG101
Smedley Handgrip dynometer (recording)Stolting56380
Powerlab 16/35, 16 Channel RecorderADInstrumentsPL3516
Human NIBP SetADInstrumentsML282-SM
Bio AmpADInstrumentsFE132
Quad Bridge AmpADInstrumentsFE224
Connex Spot MonitorWelch Allyn71WX-B
Origin(Pro) graphing softwareOrignProPro
Lower body negative pressure chamberPhysiology Research Instrumentsstandard unit

References

  1. Huang, A. L., et al. Predictive value of reactive hyperemia for cardiovascular events in patients with peripheral arterial disease undergoing vascular surgery. Arterioscler Thromb Vasc Biol. 27 (10), 2113-2119 (2007).
  2. Suryapranata, H., et al. Predictive value of reactive hyperemic response on reperfusion on recovery of regional myocardial function after coronary angioplasty in acute myocardial infarction. Circulation. 89 (3), 1109-1117 (1994).
  3. Richardson, R. S., et al. High Muscle Blood-Flow in Man - Is Maximal O2 Extraction Compromised. J of Appl Physiol. 75 (4), 1911-1916 (1993).
  4. Clifford, P. S., Hellsten, Y. Vasodilatory mechanisms in contracting skeletal muscle. J Appl Physiol. 97 (1), 393-403 (2004).
  5. Hansen, J., Thomas, G. D., Jacobsen, T. N., Victor, R. G. Muscle metaboreflex triggers parallel sympathetic activation in exercising and resting human skeletal muscle. Am J Physiol. 266 (6 Pt 2), H2508-H2514 (1994).
  6. Thomas, G. D., Victor, R. G. Nitric oxide mediates contraction-induced attenuation of sympathetic vasoconstriction in rat skeletal muscle. J Physiol. 506 (Pt 3), 817-826 (1998).
  7. Hansen, J., Thomas, G. D., Harris, S. A., Parsons, W. J., Victor, R. G. Differential sympathetic neural control of oxygenation in resting and exercising human skeletal muscle. J Clin Invest. 98 (2), 584-596 (1996).
  8. Rosenmeier, J. B., Fritzlar, S. J., Dinenno, F. A., Joyner, M. J. Exogenous NO administration and alpha-adrenergic vasoconstriction in human limbs. J Appl Physiol. 95 (6), 2370-2374 (2003).
  9. Fadel, P. J., Keller, D. M., Watanabe, H., Raven, P. B., Thomas, G. D. Noninvasive assessment of sympathetic vasoconstriction in human and rodent skeletal muscle using near-infrared spectroscopy and Doppler ultrasound. J Appl Physiol. 96 (4), 1323-1330 (2004).
  10. Nelson, M. D., et al. PDE5 inhibition alleviates functional muscle ischemia in boys with Duchenne muscular dystrophy. Neurology. 82 (23), 2085-2091 (2014).
  11. Nelson, M. D., et al. Sodium nitrate alleviates functional muscle ischaemia in patients with Becker muscular dystrophy. J Physiol. 593 (23), 5183-5200 (2015).
  12. Remensnyder, J. P., Mitchell, J. H., Sarnoff, S. J. Functional sympatholysis during muscular activity. Observations on influence of carotid sinus on oxygen uptake. Circ Res. 11, 370-380 (1962).
  13. Kodama, S., et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA. 301 (19), 2024-2035 (2009).
  14. Westerblad, H., Place, N., Yamada, T. Muscle Biophysics: From Molecules to Cells. Rassier, D. E. , Springer. New York. 279-296 (2010).
  15. Tyni-Lenné, R., Gordon, A., Jansson, E., Bermann, G., Sylvén, C. Skeletal muscle endurance training improves peripheral oxidative capacity, exercise tolerance, and health-related quality of life in women with chronic congestive heart failure secondary to either ischemic cardiomyopathy or idiopathic dilated cardiomyopathy. Am J of Cardiol. 80 (8), 1025-1029 (1997).
  16. Cabalzar, A. L., et al. Muscle function and quality of life in the Crohn's disease. Fisioter Mov. 30, 337-345 (2017).
  17. Esch, B. T., Scott, J. M., Warburton, D. E. Construction of a lower body negative pressure chamber. Adv Physiol Educ. 31 (1), 76-81 (2007).
  18. Ryan, T. E., Southern, W. M., Reynolds, M. A., McCully, K. K. A cross-validation of near-infrared spectroscopy measurements of skeletal muscle oxidative capacity with phosphorus magnetic resonance spectroscopy. J Appl Physiol. 115 (12), 1757-1766 (2013).
  19. Ryan, T. E., Brophy, P., Lin, C. T., Hickner, R. C., Neufer, P. D. Assessment of in vivo skeletal muscle mitochondrial respiratory capacity in humans by near-infrared spectroscopy: a comparison with in situ measurements. J Physiol. 592 (15), 3231-3241 (2014).
  20. Adami, A., Rossiter, H. B. Principles, insights and potential pitfalls of the non-invasive determination of muscle oxidative capacity by near-infrared spectroscopy. J Appl Physiol. , (2017).
  21. Corretti, M. C., et al. Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery - A report of the International Brachial Artery Reactivity Task Force. J Am Coll Cardiol. 39 (2), 257-265 (2002).
  22. Thijssen, D. H., et al. Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. Am J Physiol Heart Circ Physiol. 300 (1), H2-H12 (2011).
  23. Green, D. J., Jones, H., Thijssen, D., Cable, N. T., Atkinson, G. Flow-mediated dilation and cardiovascular event prediction: does nitric oxide matter? Hypertension. 57 (3), 363-369 (2011).
  24. Southern, W. M., Ryan, T. E., Reynolds, M. A., McCully, K. Reproducibility of near-infrared spectroscopy measurements of oxidative function and postexercise recovery kinetics in the medial gastrocnemius muscle. Appl Physiol Nutr Metab. 39 (5), 521-529 (2014).
  25. Ryan, T. E., Erickson, M. L., Brizendine, J. T., Young, H. J., McCully, K. K. Noninvasive evaluation of skeletal muscle mitochondrial capacity with near-infrared spectroscopy: correcting for blood volume changes. J Appl Physiol. 113 (2), 175-183 (2012).
  26. Ryan, T. E., et al. Skeletal muscle oxidative capacity in amyotrophic lateral sclerosis. Muscle Nerve. 50 (5), 767-774 (2014).
  27. Mayeur, C., Campard, S., Richard, C., Teboul, J. L. Comparison of four different vascular occlusion tests for assessing reactive hyperemia using near-infrared spectroscopy. Crit Care Med. 39 (4), 695-701 (2011).
  28. McLay, K. M., et al. Vascular responsiveness determined by near-infrared spectroscopy measures of oxygen saturation. Exp Physiol. 101 (1), 34-40 (2016).
  29. McLay, K. M., Nederveen, J. P., Pogliaghi, S., Paterson, D. H., Murias, J. M. Repeatability of vascular responsiveness measures derived from near-infrared spectroscopy. Physiol Rep. 4 (9), (2016).
  30. Ryan, T. E., Southern, W. M., Brizendine, J. T., McCully, K. K. Activity-induced changes in skeletal muscle metabolism measured with optical spectroscopy. Med Sci Sports Exerc. 45 (12), 2346-2352 (2013).
  31. Southern, W. M., et al. Reduced skeletal muscle oxidative capacity and impaired training adaptations in heart failure. Physiol Rep. 3 (4), (2015).
  32. Ryan, T. E., Brizendine, J. T., McCully, K. K. A comparison of exercise type and intensity on the noninvasive assessment of skeletal muscle mitochondrial function using near-infrared spectroscopy. J Appl Physiol. 114 (2), 230-237 (2013).
  33. Adami, A., Cao, R., Porszasz, J., Casaburi, R., Rossiter, H. B. Reproducibility of NIRS assessment of muscle oxidative capacity in smokers with and without COPD. Respir Physiol Neurobiol. 235, 18-26 (2017).
  34. Lacroix, S., et al. Reproducibility of near-infrared spectroscopy parameters measured during brachial artery occlusion and reactive hyperemia in healthy men. J Biomed Opt. 17 (7), 077010(2012).
  35. Bopp, C. M., Townsend, D. K., Warren, S., Barstow, T. J. Relationship between brachial artery blood flow and total [hemoglobin+myoglobin] during post-occlusive reactive hyperemia. Microvasc Res. 91, 37-43 (2014).
  36. Willingham, T. B., Southern, W. M., McCully, K. K. Measuring reactive hyperemia in the lower limb using near-infrared spectroscopy. J Biomed Opt. 21 (9), 091302(2016).
  37. Kragelj, R., Jarm, T., Erjavec, T., Presern-Strukelj, M., Miklavcic, D. Parameters of postocclusive reactive hyperemia measured by near infrared spectroscopy in patients with peripheral vascular disease and in healthy volunteers. Ann Biomed Eng. 29 (4), 311-320 (2001).
  38. Gurley, K., Shang, Y., Yu, G. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle. J Biomed Opt. 17 (7), 075010(2012).

Access restricted. Please log in or start a trial to view this content.

Reprints and Permissions

Request permission to reuse the text or figures of this JoVE article

Request Permission

Explore More Articles

Skeletal MuscleNeurovascular CouplingOxidative CapacityMicrovascular FunctionNear infrared SpectroscopyExercise IntoleranceCardiovascular DiseaseNoninvasive AssessmentMacro And Micro Vascular FunctionSkeletal Oxidative CapacityLBNP ChamberECG ElectrodesBlood Pressure MonitorHand Grip DynamometerMaximum Voluntary ContractionRapid Inflation CuffNIR Probe

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2025 MyJoVE Corporation. All rights reserved