JoVE Logo
Faculty Resource Center

Sign In

Abstract

Immunology and Infection

Assessment of the Synaptic Interface of Primary Human T Cells from Peripheral Blood and Lymphoid Tissue

Published: July 30th, 2018

DOI:

10.3791/58143

1Department of Microbiology and Immunology, Thomas Jefferson University, 2Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, 3Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital Huddinge, 4Departments of Microbiology and Immunology and Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University

The current understanding of the dynamics and structural features of T-cell synaptic interfaces has been largely determined through the use of glass-supported planar bilayers and in vitro-derived T-cell clones or lines1,2,3,4. How these findings apply to the primary human T cells isolated from blood or lymphoid tissues is not known, partly due to significant difficulties in obtaining a sufficient number of cells for analysis5. Here we address this through the development of a technique exploiting multichannel flow slides to build planar lipid bilayers containing activating and adhesion molecules. The low height of the flow slides promotes rapid cell sedimentation in order to synchronize cell:bilayer attachment, thereby allowing researchers to study the dynamic of the synaptic interface formation and the kinetics of the granules release. We apply this approach to analyze the synaptic interface of as few as 104 to 105 primary cryopreserved T cells isolated from lymph nodes (LN) and peripheral blood (PB). The results reveal that the novel planar lipid bilayer technique enables the study of the biophysical properties of primary human T cells derived from blood and tissues in the context of health and disease.

Tags

Keywords T Cells

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved