A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we present a protocol for an ex vivo lung cancer model that mimics the steps of tumor progression and helps to isolate a primary tumor, circulating tumor cells, and metastatic lesions.
It is difficult to isolate tumor cells at different points of tumor progression. We created an ex vivo lung model that can show the interaction of tumor cells with a natural matrix and continual flow of nutrients, as well as a model that shows the interaction of tumor cells with normal cellular components and a natural matrix. The acellular ex vivo lung model is created by isolating a rat heart-lung block and removing all the cells using the decellularization process. The right main bronchus is tied off and tumor cells are placed in the trachea by a syringe. The cells move and populate the left lung. The lung is then placed in a bioreactor where the pulmonary artery receives a continual flow of media in a closed circuit. The tumor grown on the left lung is the primary tumor. The tumor cells that are isolated in the circulating media are circulating tumor cells and the tumor cells in the right lung are metastatic lesions. The cellular ex vivo lung model is created by skipping the decellularization process. Each model can be used to answer different research questions.
Cancer metastasis is the culprit behind most cancer-related deaths and poses the ultimate challenge in the effort to fight cancer. The overall goal of this method is to design a protocol for a four-dimensional (4-D) cell culture which has a dimension of flow, in addition to the three-dimensional (3-D) cell growth. It represents the three distinct phases of the metastasis process [i.e., the primary tumor, circulating tumor cells (CTCs), and metastatic lesions].
Over the past three decades, scientists around the world yielded an unparalleled wealth of information to understand the mechanisms underlying the metastatic progression in d....
The protocols for animal experiments were approved by the Institutional Animal Care and Use Committee at the Houston Methodist Research Institute and carried out in accordance with all regulations, applicable laws, guidelines, and policies.
1. Rat Lung Harvest
The lung harvested from rat maintains the intact vasculature and alveoli11 (Figure 3A and 3B). Upon decellularization, the extracellular matrix components of an acellular lung, such as collagen, fibronectin, and elastin, are preserved11 (Figure 3C, 3D, 3E, and 3F). The decellularization leads to a complete removal o.......
The ex vivo 4-D lung provides an opportunity to study tumor growth and metastasis in a laboratory set-up. A native lung matrix is a complex system that provides support to normal tissue and maintains cell-cell interactions, cell-matrix interactions, cellular differentiation, and tissue organization. It provides an opportunity to add any tumor microenvironment components to study their effects on tumor growth and the interaction with other cells.
The lung harvest is the critical step .......
The authors have nothing to disclose.
Min P. Kim received grant support from the Second John W. Kirklin Research Scholarship, American Association for Thoracic Surgery, Graham Research Foundation, Houston Methodist Specialty Physician Group Grant, and Michael M. and Joann H. Cone Research Award. We thank Ann Saikin for the language editing of the manuscript.
....Name | Company | Catalog Number | Comments |
Sprague Dowley rat | Harlan | 206M | Male |
Chlorhexidine swab | Prevantics, NY, USA | NDC 10819-1080-1 | |
Heparin | Sagent Pharmaceuticals, Schaumburg, IL, USA | NDC 25021-400-10 | |
18-gauge needle | McMaster Carr, USA | 75165A249 | |
2-0 silk tie | Ethicon, San Angelo, TX, USA | A305H | |
Masterflex L/S pump | Cole-Parmer, Vernon Hills, IL, USA | EW-07554-80 | |
Masterflex L/S pump head | Cole-Parmer, Vernon Hills, IL, USA | EW-07519-05 | |
Masterflex L/S pump cartridge | Cole-Parmer, Vernon Hills, IL, USA | EW-07519-70 | |
Tygon Tube | Cole-Parmer, Vernon Hills, IL, USA | 14171211 | |
MasterFlex Pump tube | Cole-Parmer, Vernon Hills, IL, USA | 06598-16 | |
Female luer lock connectors | Cole-Parmer, Vernon Hills, IL, USA | 45508-34 | 75165A249 |
Male luer lock connectors | Cole-Parmer, Vernon Hills, IL, USA | 45513-04 | |
black nylon ring | Cole-Parmer, Vernon Hills, IL, USA | EW-45509-04 | |
Intravenous set | CareFusion | 41134E | |
Sodium Dodecyl Sulfate (SDS) | Fisher Scientific | CAS151-21-3 | |
Triton X-100 | Sigma-Aldrich | X100-1L | |
Antibiotics | Gibco | 15240-062 | |
Silicone oxygenator | Cole-Parmer, Vernon Hills, IL, USA | ABW00011 | Saint-GoBain- |
Wire mesh | 1164610105 | Lowes | New York Wire |
Female luer Lug Style TEE | Cole-Parmer, Vernon Hills, IL, USA | 45508-56 | |
Male luer integral lock ring to 200series Barb | Cole-Parmer, Vernon Hills, IL, USA | 45518-08 | |
Female luer thread style coupler | Cole-Parmer, Vernon Hills, IL, USA | 45508-22 | |
Clave connector | ICU Medical | 11956 | |
Hi-Flo ™4-way Stopcock w/swivel male luer lock | smith Medical | MX9341L | |
MasterFlex Pump tube | Cole-Parmer, Vernon Hills, IL, USA | 06598-13 | for cannula |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2025 MyJoVE Corporation. All rights reserved