JoVE Logo
Faculty Resource Center

Sign In

Abstract

Environment

An Experimental Protocol for Studying Mineral Effects on Organic Hydrothermal Transformations

Published: August 8th, 2018

DOI:

10.3791/58230

1Department of Chemistry, Oakland University

Organic-mineral interactions are widely occurring in hydrothermal environments, such as hot springs, geysers on land, and the hydrothermal vents in the deep ocean. Roles of minerals are critical in many hydrothermal organic geochemical processes. Traditional hydrothermal methodology, which includes using reactors made of gold, titanium, platinum, or stainless-steel, is usually associated with the high cost or undesired metal catalytic effects. Recently, there is a growing tendency for using the cost-effective and inert quartz or fused silica glass tubes in hydrothermal experiments. Here, we provide a protocol for carrying out organic-mineral hydrothermal experiments in silica tubes, and we describe the essential steps in the sample preparation, experimental setup, products separation, and quantitative analysis. We also demonstrate an experiment using a model organic compound, nitrobenzene, to show the effect of an iron-containing mineral, magnetite, on its degradation under a specific hydrothermal condition. This technique can be applied to study complex organic-mineral hydrothermal interactions in a relatively simple laboratory system.

Tags

Keywords Hydrothermal

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved