A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Here we describe a protocol for producing harvesting needles that can be used to collect full-thickness skin tissue without causing donor site scarring. The needles can be combined with a simple collection system to achieve high-volume harvesting.
This manuscript describes the production process for a laboratory apparatus, made from off-the-shelf components, that can be used to collect microcolumns of full-thickness skin tissue. The small size of the microcolumns allows donor sites to heal quickly without causing donor site scarring, while harvesting full-thickness tissue enables the incorporation of all cellular and extracellular components of skin tissue, including those associated with deeper dermal regions and the adnexal skin structures, which have yet to be successfully reproduced using conventional tissue engineering techniques. The microcolumns can be applied directly into skin wounds to augment healing, or they can be used as the autologous cell/tissue source for other tissue engineering approaches. The harvesting needles are made by modifying standard hypodermic needles, and they can be used alone for harvesting small amounts of tissue or coupled with a simple suction-based collection system (also made from commonly available laboratory supplies) for high-volume harvesting to facilitate studies in large animal models.
Autologous skin grafting is the mainstay of wound repair, but it is limited by donor site scarcity and morbidity, leading to concerted efforts in recent decades to develop new therapeutic options to replace conventional skin grafting1,2. We recently developed an alternative method of harvesting skin to harness the benefits of full-thickness skin grafting while minimizing donor site morbidity. By collecting full-thickness skin in the form of small (~0.5 mm diameter) "microcolumns", donor sites are able to heal rapidly and without scarring under normal circumstances (for potential exceptions, see the discussion section below)3. Microcolumns can be applied directly into wound beds to accelerate wound closure, reduce contraction3, and restore a diverse range of epidermal and dermal cell types and functional adnexal structures4, many of which are lacking in conventional split-thickness skin grafting or current bioengineered skin substitutes5. The ability of microcolumns to augment healing and of their donor sites to heal without scarring have both been independently validated by other research groups6,7.
We have previously developed a laboratory harvesting system to enable the collection of microcolumns at scale8; however, this system is composed of many customized components that are not widely available. Here, we describe in detail the process for producing harvesting needles, as well as simple collection systems, made from mostly off-the-shelf components, that can be used to achieve high-volume harvesting. The apparatus described in this manuscript is suitable for in vitro and animal work, but not for use in humans. A clinical device with FDA clearance for applying this technique in humans is commercially available but will not be discussed in detail here.
Access restricted. Please log in or start a trial to view this content.
All work involving live animals and animal tissue samples have been approved by the Massachusetts General Hospital Institutional Animal Care and Use Committee (IACUC).
1. Production of Harvesting Needles
2. Skin Tissue Harvesting
Access restricted. Please log in or start a trial to view this content.
The harvesting needles should be able to collect microcolumns of full-thickness skin tissue with approximately a 80-90% success rate, and each microcolumn should contain epidermis, dermis, and some subcutaneous fat (Figure 4). If the success rate of harvesting is low, or if it becomes difficult to insert a needle into tissue, then a new needle is likely needed. If the success rate for harvesting is consistently low, even with new needles, then the needles are...
Access restricted. Please log in or start a trial to view this content.
The methods described here are intended to enable the collection of tissue microcolumns in sufficient quantities for in vivo large animal studies, using tools made from commercially available laboratory supplies. This apparatus has been used previously in harvesting tissue from excised human skin4,9 as well as live swine skin3. The specific parameters described are those that were found to be most suited for use in swine. It is ex...
Access restricted. Please log in or start a trial to view this content.
The authors are co-inventors on patents relating to the technology described in this article, from which they have received licensing and royalty revenues through their institution, the Massachusetts General Hospital. J. Tam also consults for Medline Industries, Inc., which holds the commercial license for this technology.
This work was supported in part by the Army, Navy, NIH, Air Force, VA and Health Affairs to support the AFIRM II effort, under Award No. W81XWH-13-2-0054. The U.S. Army Medical Research Acquisition Activity, 820 Chandler Street, Fort Detrick, MD 21702-5014 is the awarding and administering acquisition office. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the Department of Defense.
Access restricted. Please log in or start a trial to view this content.
Name | Company | Catalog Number | Comments |
Diamond wheel | Dremel | 545 | |
Hypodermic needle (19G) | Fisher Scientific | 14-840-98 | Other needle sizes could be used, depending on experimental needs |
Stone wheel | Dremel | 540 | |
Syringe (20mL with luer lock) | Fisher Scientific | 22-124-967 | |
Suction adapter | Tulip Medical | PA20BD | Optional, for high volume harvesting |
Suction canister | Fisher Scientific | 19-898-212 | Optional, for high volume harvesting. Sterilize before use. |
Suction tubing | Medline | DYND50216H | Optional, for high volume harvesting |
Access restricted. Please log in or start a trial to view this content.
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved