JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Using a Classroom-Based Deese Roediger McDermott Paradigm to Assess the Effects of Imagery on False Memories

Published: November 14th, 2018



1Department of Human Services and Psychology, Mercer University, 2Department of Psychology, Oglethorpe University

The method presented here induced false memories using lists of related words and also assessed the effects of imagery instructions on the recall and recognition of those false memories. This protocol details a modified version of the Deese Roediger McDermott (DRM) paradigm.

Associated word list procedures can elicit false memories in predictable ways by inducing associative processing, thus making it harder to monitor the accuracy of memories. The purpose of the method presented here was to induce false memories using lists of either semantically or phonologically related words and to assess the effects of imagery instructions on the recall and recognition of those false memories. To do this, we used a modified version of the Deese Roediger McDermott (DRM) paradigm. We adapted word lists from previous DRM studies to suit imagery procedures and created an automated presentation to present the word lists in classroom settings. We then recruited undergraduate classes and instructed some of the classes to create mental images of the list words as they were being presented, while instructing the other classes to simply remember the words. The automated presentation presented word lists to participants, one word at a time, alternating between phonologically and semantically related lists. Participants used paper-pencil recall packets to immediately recall list items, complete a distractor activity, and take a subsequent final recognition test. Often, participants immediately recalled and later recognized words that were related to the list items but were not actually presented; these are known as critical lures and indicate a false memory. The protocol detailed here describes a four-step procedure - list presentation, immediate recall, distractor phase, and final recognition - that can assess the effects of list type and imagery instruction within the DRM paradigm on memory. The automated nature of the list presentation provides the ability to systematically vary variables of interest, and the paper and pencil method of data collection affords an easily accessible method for collecting data in classroom settings. The protocol also offers options to modify the procedure to a more traditional DRM paradigm without imagery and/or list type manipulations. The use of this protocol can provide results relevant to both classroom learning and cognitive science principles.

Memory is malleable and fallible, and these days people realize the limitations of their own memory system. But how do memory errors arise? What mechanisms are responsible for errors in memory retrieval? We modified a widely used and highly cited laboratory-based procedure called the Deese Roediger McDermott paradigm (DRM)1,2 to investigate the influence of different variables on memory errors. In traditional DRM procedures, participants are asked to learn lists of semantically related words (e.g., table, couch, desk, lamp, pillow, stool, bench, rocker). When later asked to recall and/or reco....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All methods described here have been approved by the Institutional Review Board of Georgia State University.

1. Material Preparation

  1. Using the word lists attached in the supplemental materials, create four separate presentations: Imagery A, Imagery B, Non-imagery A, and Non-imagery B. Ensure that all four presentations are void of templates or designs, with white backgrounds and black font. The two list orders, A and B, serve to balance any effects of list order or fatigue. The two.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Effects of DRM Procedures on False Memories: Standard DRM Instructions without Imagery
To illustrate standard DRM procedures' ability to induce false memories, we analyzed rates of falsely remembering non-list words during recall and recognition. Table 1 reports proportions for the different types of false remembering that occurred during recall and recognition. During immediate recall, participants recalled unpresented words on 20% of the lists.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The protocol employed in this study modified a widely used word list procedure, the Deese Roediger McDermott (DRM) paradigm, to assess the effects of associative processing with and without imagery instructions on false memories in a classroom-based procedure. The expansion to include the variables of list association type, test type, and imagery instruction implemented here afforded the ability to analyze how each of these complex factors influenced a learning context independently, as well as how they interacted, provi.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We send special thanks Dr. Mary Ann Foley and Dr. Karen Zabrucky for collaborative work on research projects informing our methodology in this paper.


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
No Materials Applicable

  1. Deese, J. On the prediction of occurrence of particular verbal intrusions in immediate recall. Journal of Experimental Psychology. 58 (1), 17-22 (1959).
  2. Roediger, H. L., McDermott, K. B. Creating false memories: Remembering words not presented in lists. Journal of Experimental Psychology: Learning, Memory, and Cognition. 21 (4), 803-814 (1995).
  3. Gallo, D. A. False memories and fantastic beliefs: 15 years of the DRM illusion. Memory & Cognition. 38 (7), 833-848 (2010).
  4. Lampinen, J. M., Neuschatz, J. S., Payne, D. G. Source attributions and false memories: A test of the demand characteristics account. Psychonomic Bulletin & Review. 6 (1), 130-135 (1999).
  5. Roediger, H. L., Balota, D. A., Watson, J. M., Roediger, H. L., Nairne, J. S., Neath, I., Surprenant, A. M. Spreading activation and arousal of false memories. The nature of remembering: Essays in honor of Robert G. Crowder. , 95-115 (2001).
  6. Roediger, H. L., Watson, J. M., McDermott, K. B., Gallo, D. A. Factors that determine false recall: A multiple regression analysis. Psychonomic Bulletin & Review. 8 (3), 385-407 (2001).
  7. Collins, A. M., Loftus, E. F. A spreading-activation theory of semantic processing. Psychological Review. 82 (6), 407-428 (1975).
  8. Buchanan, L., Brown, N. R., Cabeza, R., Maitson, C. False memories and semantic lexicon arrangement. Brain and Language. 68 (1-2), 172-177 (1999).
  9. Watson, J. M., Balota, D. A., Roediger, H. I. Creating false memories with hybrid lists of semantic and phonological associates: Over-additive false memories produced by converging associative networks. Journal of Memory And Language. 49 (1), 95-118 (2003).
  10. Robin, F. Imagination and false memories. Imagination, Cognition, and Personality. 30 (4), 407-424 (2011).
  11. Bays, R. B., Foley, M. A. Autobiographical memories and the DRM illusion: Investigating the content and process of lure activations. Applied Cognitive Psychology. 29 (5), 742-752 (2015).
  12. Foley, M. A. Imagery encoding and false recognition errors: Exploring boundary conditions of imagery's enhancing effects. Memory. 20 (6), 700-716 (2012).
  13. Foley, M. A., Cowan, E., Schlemmer, E., Belser-Ehrlich, J. Acts of generating and their sources: Predicting the effects of imagery encoding on false recognition errors. Memory. 20 (4), 384-399 (2012).
  14. Oliver, M., Bays, R. B., Zabrucky, K. M. False memories and the DRM paradigm: Effects of imagery, list and test type. TheJournal of General Psychology. 143 (1), 33-48 (2016).
  15. Ballou, M. R., Sommers, M. S. Similar phenomena, different mechanisms: Semantic and phonological false memories are produced by independent mechanisms. Memory & cognition. 36 (8), 1450-1459 (2008).
  16. Garry, M., Manning, C. G., Loftus, E. F., Sherman, S. J. Imagination inflation: Imagining a childhood event inflates confidence that it occurred. Psychonomic Bulletin & Review. 3 (2), 208-214 (1996).
  17. Garry, M., Polascheck, D. L. L. Imagination and memory. Current Directions in Psychological Science. 9 (1), 6-10 (2000).
  18. Hyman, I. E., Pentland, J. The role mental imagery in the creation of false childhood memories. Journal of Memory and Language. 35 (2), 101-117 (1996).
  19. Bays, R. B., Zabrucky, K. M., Foley, M. A. Imagery induction processes differentially impact imagination inflation. Imagination, Cognition, and Personality. 35 (1), 5-25 (2015).
  20. Wade, K. A., Garry, M., Read, J. D., Lindsay, D. S. A picture is worth a thousand lies: Using false photographs to create false childhood memories. Psychonomic Bulletin & Review. 9 (3), 597-603 (2002).
  21. Foley, M. A., Wozniak, K. H., Gillum, A. Imagination and false memory inductions: investigating the role of process, content and source of imaginations. Applied Cognitive Psychology. 20 (9), 1119 (2006).
  22. McDermott, K. B., Watson, J. M. The rise and fall of false recall: The impact of presentation duration. Journal of Memory and Language. 45 (1), 160-176 (2001).
  23. Robin, F., Mahé, A. Effects of image and verbal generation on false memory. Imagination, Cognition and Personality. 35 (1), 26-46 (2015).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved