A subscription to JoVE is required to view this content. Sign in or start your free trial.
Abstract
Neuroscience
* These authors contributed equally
In recent years, optogenetics has been widely used in many fields of neuroscientific research. In many cases, an opsin, such as channel rhodopsin 2 (ChR2), is expressed by a virus vector in a particular type of neuronal cells in various Cre-driver mice. Activation of these opsins is triggered by application of light pulses which are delivered by laser or LED through optic cables, and the effect of activation is observed with very high time resolution. Experimenters are able to acutely stimulate neurons while monitoring behavior or another physiological outcome in mice. Optogenetics can enable useful strategies to evaluate function of neuronal circuits in the regulation of sleep/wakefulness states in mice. Here we describe a technique for examining the effect of optogenetic manipulation of neurons with a specific chemical identity during electroencephalogram (EEG) and electromyogram (EMG) monitoring to evaluate the sleep stage of mice. As an example, we describe manipulation of GABAergic neurons in the bed nucleus of the stria terminalis (BNST). Acute optogenetic excitation of these neurons triggers a rapid transition to wakefulness when applied during NREM sleep. Optogenetic manipulation along with EEG/EMG recording can be applied to decipher the neuronal circuits that regulate sleep/wakefulness states.
Explore More Videos
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved