A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
A protocol for synthesizing inorganic-lead-halide hybrid perovskite quantum dot inks for inkjet printing and the protocol for preparing and printing the quantum dot inks in an inkjet printer with post characterization techniques are presented.
A method for synthesizing photoactive inorganic perovskite quantum dot inks and an inkjet printer deposition method, using the synthesized inks, are demonstrated. The ink synthesis is based on a simple wet chemical reaction and the inkjet printing protocol is a facile step by step method. The inkjet printed thin films have been characterized by X-ray diffraction, optical absorption spectroscopy, photoluminescent spectroscopy, and electronic transport measurements. X-ray diffraction of the printed quantum dot films indicates a crystal structure consistent with an orthorhombic room temperature phase with (001) orientation. In conjunction with other characterization methods, the X-ray diffraction measurements show high quality films can be obtained through the inkjet printing method.
Dieter Weber synthesized the first organic-inorganic hybrid halide perovskites in 19781,2. Roughly 30 years later in 2009, Akihiro Kojima and collaborators fabricated photovoltaic devices using the same organic-inorganic hybrid halide perovskites synthesized by Weber, namely, CH3NH3PbI3 and CH3NH3PbBr33. These experiments were the beginning of a subsequent tidal wave of research focusing on the photovoltaic properties of organic-inorganic hybrid halide perovskites. From 2009 to 2018, the device power conversion efficiency dramatically increased from 3.8%3 to over 23%4, making organic-inorganic hybrid halide perovskites comparable to Si-based solar cells. As with the organic-inorganic halide-based perovskites, the inorganic halide-based perovskites started gaining traction in the research community around 2012 when the first photovoltaic device efficiency was measured to be 0.9%5. Since 2012 the all inorganic halide-based perovskites have come a long way with some device efficiencies measured to be over 13% as in the 2017 study by Sanehira et al.6 Both the organic-based and inorganic-based perovskites find applications related to lasers7,8,9,10, light emitting diodes11,12,13, high energy radiation detection14, photo detection15,16, and of course photovoltaic applications5,15,17,18. Over almost the past decade, many different synthesis techniques have emerged from scientists and engineers ranging from solution processed methods to vacuum vapor deposition techniques19,20,21. The halide perovskites synthesized using a solution-processed method are advantageous as they can easily be employed as inks for inkjet printing15.
In 1987, the first reported use of inkjet printing of solar cells was presented. Since then, scientists and engineers have sought ways to successfully print all inorganic solar cells with attractive performance properties and low implementation costs22. There are many advantages to inkjet printing solar cells, as compared to some of the common vacuum based fabrication methods. An important aspect of the inkjet printing method is that solution-based materials are used as inks. This opens the door for trials of many different materials, such as inorganic perovskite-based inks, which can be synthesized by facile wet chemical methods. In other words, inkjet printing of solar cell materials is a low-cost route to rapid prototyping. Inkjet printing also has the advantages of being able to print large areas on flexible substrates and print by design at low temperatures in atmospheric conditions. Furthermore, inkjet printing is highly suitable for mass production allowing for realistic low cost roll-to-roll implementation23,24.
In this article, we first discuss the steps involved with synthesizing inorganic perovskite quantum dot inks for inkjet printing. Then, we describe the additional steps for preparing inks for printing and the actual procedures for inkjet printing a photoactive film using a commercially available inkjet printer. Finally, we discuss the characterization of the printed films which is necessary to ensure the films are of proper chemical and crystal composition for high quality device performance.
CAUTION: Please consult the lab’s material safety data sheets (MSDS) before proceeding. The chemicals used in these synthesis protocols have associated health hazards. Additionally, nanomaterials have additional hazards compared to their bulk counterpart. Please use all appropriate safety practices when performing a nanocrystal reaction including the use of a fume hood or glovebox and the proper personal protective equipment (safety glasses, gloves, lab coat, pants, closed-toe shoes, etc.).
1. Precursor Synthesis
2. CsPbBr3 Quantum Dot Synthesis
3. Cleaning the Printer Head
4. Printing Perovskite Quantum Dot Inks
NOTE: This protocol uses an inkjet printer that includes the ability to print CD labels onto CDs with the aid of a rigid CD disc tray. It is recommended before printing perovskites, that one cut out a preferred shape and size of the substrate and then print the exact size and shape of the desired substrate on the CD disk itself using black ink, as shown in Figure 5.
Crystal Structure Characterization
Characterizing the crystal structure is vital regarding the synthesis of the inorganic perovskites. X-ray diffraction (XRD) was performed in air at room temperature on a diffractometer using a 1.54 Å wavelength Cu-Kα light source. Using the above protocols should lead to a room temperature orthorhombic crystal structure for the CsPbBr3 quantum dot inks as shown...
There are many parameters involved in the inkjet printing process that affect the final printed film. The discussion of all those parameters is beyond the scope of this protocol, but as this protocol focuses on a solution-based synthesis and deposition method, it is appropriate to give a short comparison to other well-known solution-based deposition methods: the spin-coating method and the doctor-blade method.
The spin-coating method is very fast, produces uniform films, and is low cost. The f...
The authors have no financial conflicts of interest and have nothing to disclose.
This work was supported by the National Science Foundation, through the Nebraska MRSEC (Grant DMR-1420645), CHE-1565692, and CHE-145533 as well as the Nebraska Center for Energy Science Research.
Name | Company | Catalog Number | Comments |
Oleic acid, 90% | Sigma Aldrich | 364525 | Technical grade |
Oleylamine, 70% | Sigma Aldrich | O7805 | Technical grade |
1-octadecene, 90% | Sigma Aldrich | O806 | Technical grade |
Acetone, >95% | Fisher | 67641 | Certified ACS |
Cesium Carbonate, 99% | Chem-Impex | 1955 | Assay |
Hexane, 98.5% | Sigma Aldrich | 178918 | Mixture of isomers |
Cyclohexane, 99.9% | Sigma Aldrich | 110827 | |
Lead(II) bromide, 98% | Sigma Aldrich | 211141 | |
Lead(II) iodide, 99% | Sigma Aldrich | 211168 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved