A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Soft, low-power, biomolecular memristors leverage similar composition, structure, and switching mechanisms of bio-synapses. Presented here is a protocol to assemble and characterize biomolecular memristors obtained from insulating lipid bilayers formed between water droplets in oil. The incorporation of voltage-activated alamethicin peptides results in memristive ionic conductance across the membrane.
The ability to recreate synaptic functionalities in synthetic circuit elements is essential for neuromorphic computing systems that seek to emulate the cognitive powers of the brain with comparable efficiency and density. To date, silicon-based three-terminal transistors and two-terminal memristors have been widely used in neuromorphic circuits, in large part due to their ability to co-locate information processing and memory. Yet these devices cannot achieve the interconnectivity and complexity of the brain because they are power-hungry, fail to mimic key synaptic functionalities, and suffer from high noise and high switching voltages. To overcome these limitations, we have developed and characterized a biomolecular memristor that mimics the composition, structure, and switching characteristics of biological synapses. Here, we describe the process of assembling and characterizing biomolecular memristors consisting of a 5 nm-thick lipid bilayer formed between lipid-functionalized water droplets in oil and doped with voltage-activated alamethicin peptides. While similar assembly protocols have been used to investigate biophysical properties of droplet-supported lipid membranes and membrane-bound ion channels, this article focuses on key modifications of the droplet interface bilayer method essential for achieving consistent memristor performance. Specifically, we describe the liposome preparation process and the incorporation of alamethicin peptides in lipid bilayer membranes, and the appropriate concentrations of each constituent as well as their impact on the overall response of the memristors. We also detail the characterization process of biomolecular memristors, including measurement and analysis of memristive current-voltage relationships obtained via cyclic voltammetry, as well as short-term plasticity and learning in response to step-wise voltage pulse trains.
It is widely recognized that biological synapses are responsible for the high efficiency and enormous parallelism of the brain due to their ability to learn and process information in highly adaptive ways. This coordinated functionality emerges from multiple, highly complex molecular mechanisms that drive both short-term and long-term synaptic plasticity1,2,3,4,5. Neuromorphic computing systems aim to emulate synaptic functionalities at levels approaching the density, complexity, and energy efficiency of the brain, which are needed for the next generation of brain-like computers6,7,8. However, reproducing synaptic features using traditional electronic circuit elements is virtually impossible9, instead requiring the design and fabrication of new hardware elements that can adapt to incoming signals and remember information histories9. These types of synapse-inspired hardware are known as mem-elements9,10,11 (short for memory elements), which, according to Di Ventra et al.9,11, are passive, two-terminal devices whose resistance, capacitance, or inductance can be reconfigured in response to external stimuli, and which can remember prior states11. To achieve energy consumption levels approaching those in the brain, these elements should employ similar materials and mechanisms for synaptic plasticity12.
To date, two-terminal memristors13,14,15 have predominantly been built using complementary metal-oxide-semiconductor (CMOS) technology, characterized by high-switching voltages and high noise. This technology does not scale well due to high power consumption and low density. To address these limitations, multiple organic and polymeric memristors have been recently built. However, these devices exhibit significantly slower switching dynamics due to time-consuming ion diffusion through a conductive polymer matrix16,17. As a result, the mechanisms by which both CMOS-based and organic memristive devices emulate synapse-inspired functionalities are highly phenomenological, encompassing only a few synaptic functionalities such as Spike Timing Dependent Plasticity (STDP)18, while overlooking other key features that also play essential roles in making the brain a powerful and efficient computer, such as pre-synaptic, short-term plasticity19.
Recently, we introduced a new class of memristive devices12 featuring voltage-activated peptides incorporated in biomimetic lipid membranes that mimics the biomolecular composition, membrane structure, and ion channel triggered switching mechanisms of biological synapses20. Here, we describe how to assemble and electrically interrogate these two-terminal devices, with specific focus on how to evaluate short-term plasticity for implementation in online learning applications12. Device assembly is based on the droplet interface bilayer (DIB)21 method, which has been used extensively in recent years to study the biophysics of model membranes21 and membrane-bound ion channels22,23,24, and as building blocks for the development of stimuli-responsive materials25,26. We describe the membrane assembly and interrogation process in detail for those interested in neuromorphic applications but have limited experience in biomaterials or membrane biology. The protocol also includes a full description of the characterization procedure, which is as important as the assembly process, given the dynamic and reconfigurable electrical properties of the device27. The procedure and representative results described here are foundations for a new class of low-cost, low-power, soft mem-elements based on lipid interfaces and other biomolecules for applications in neuromorphic computing, autonomous structures and systems, and even adaptive brain-computer interfaces.
1. General Instructions and Precautions
2. Preparation of Aqueous Buffer Solution
3. Preparation of Liposomes
NOTE: Step 3.1 only applies if phospholipids are acquired as lyophilized powders, and therefore, may be skipped if the phospholipids are purchased in chloroform.
4. Reconstitution of Alamethicin Peptides
NOTE: This procedure describes the process of alamethicin reconstitution in liposomes to a final concentration of 1 μM. This concentration is sufficient to induce nA-level currents similar to those previously published12. Increasing the peptide concentration will reduce the switching threshold and increase the amplitudes of currents induced by applied voltage29.
5. Preparation of Agarose gel
6. Fabrication of the Oil Reservoir
NOTE: The procedure described below is just one of many ways that an oil reservoir can be fabricated. The reader is encouraged to design and fabricate a reservoir based on available materials, machining capabilities, and specific needs.
7. Preparation of Electrodes
8. Setting Up the Experiment
9. Proper Grounding to Reduce Electrical Noise
10. Feedback-Controlled Heating
11. Setting Up the Software and Equipment
12. Pipette Offset
NOTE: The procedure described below applies only to current amplifier mentioned in Table of Materials.
13. Formation of the Lipid Bilayer
14. Electrical Characterization of the Biomolecular Memristor
Figure 1 displays the experimental setup used to assemble and characterize the biomolecular memristor. Lowering the free ends of the electrodes to the bottom of the oil reservoir, as shown in Figure 1b, was found helpful to minimize vibrations of the electrodes and droplets that can result in variations in measured current and bilayer area, especially in cases where heating the oil can generate convective flow in the oil. Figure 2 s...
This paper presents a protocol for assembling and characterizing biomolecular memristors based on ion channel-doped synthetic biomembranes formed between two droplets of water in oil. The soft-matter, two-terminal device is designed and studied to: 1) overcome constraints that are associated with solid-state technology, such as high noise, high energy consumption, and high switching voltages, 2) more closely mimic the composition, structure, switching mechanisms of biological synapses, and 3) explore the mechanisms and f...
This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes.
Financial support was provided by the National Science Foundation Grant NSF ECCS-1631472. Research for G.J.T., C.D.S., A.B., and C.P.C. was partially sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.
Name | Company | Catalog Number | Comments |
1,2-diphytanoy-sn-glycero-3-phosphocholine (DPhPC) | Avanti Polar Lipids | 850356P/850356C | Purchased as lyophilized powder (P) or in chloroform (C) |
Agarose | Sigma-Aldrich | A9539 | |
Agarose (0.5g Agarose Tablets) | Benchmark | A2501 | You can either use the powder form or the tablets |
Alamethicin | AG Scientific | A-1286 | |
Analytical balance | Mettler Toledo | ME204TE/00 | |
Axopatch 200B Amplifier | Molecular Devices | - | |
BK Precision 4017B 10 MHz DDs Sweep/Function Generator | Digi-Key | BK4017B-ND | |
Borosilicate Glass Capillaries | World Precision Instruments | 1B100F-4 | |
Brain Total Lipid Extracts (Porcine) | Avanti Polar Lipids | 131101 | |
DigiData 1440A system | Molecular Devices | - | |
Extruder Set With Holder/Heating Block | Avanti Polar Lipids | 610000 | This includes a mini-extruder, 2 syringes, 100 PC membranes, 100 filter supports, and 1 holder/heating block |
Freezer (-20 °C) | VWR International | SCUCBI0420AD | |
Glassware | VWR International | - | |
Hexadecane, 99% | Sigma-Aldrich | 544-76-3 | |
Isopropyl Alcohol | VWR International | BDH1133-4LP | |
Microelectrode Holder | World Precision Instruments | MEH1S | |
MOPS | Sigma-Aldrich | M1254 | |
Nitrogen (N2) Gas | Airgas | UN1066 | |
Parafilm M All-Purpose Laboratory Film | Parafilm | PM999 | |
Powder Free Soft Nitrile Examination Gloves | VWR International | CA89-38-272 | |
Precleaned Microscope Sildes | Fisher Scientific | 22-267-013 | |
Refrigirator (4 °C) | VWR International | SCUCFS-0504G | |
Silver wire | GoodFellow | 147-346-94 | Different diameters could be used depending on the application |
Sodium Chloride (KCl) | Sigma-Aldrich | P3911 | |
Stirring Hot Plate | Thermo Scientific | SP131325 | |
VWR Light-Duty Tissue Wipers | VWR International | 82003-820 | |
VWR Scientific 50D Ultrasonic Cleaner | VWR International | 13089 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved