A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol outlines experimental procedures to characterize genome-wide changes in the levels of histone post-translational modifications (PTM) occurring in connection with the overexpression of proteins associated with ALS and Parkinson's disease in Saccharomyces cerevisiae models. After SDS-PAGE separation, individual histone PTM levels are detected with modification-specific antibodies via Western blotting.
Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD), cause the loss of hundreds of thousands of lives each year. Effective treatment options able to halt disease progression are lacking. Despite the extensive sequencing efforts in large patient populations, the majority of ALS and PD cases remain unexplained by genetic mutations alone. Epigenetics mechanisms, such as the post-translational modification of histone proteins, may be involved in neurodegenerative disease etiology and progression and lead to new targets for pharmaceutical intervention. Mammalian in vivo and in vitro models of ALS and PD are costly and often require prolonged and laborious experimental protocols. Here, we outline a practical, fast, and cost-effective approach to determining genome-wide alterations in histone modification levels using Saccharomyces cerevisiae as a model system. This protocol allows for comprehensive investigations into epigenetic changes connected to neurodegenerative proteinopathies that corroborate previous findings in different model systems while significantly expanding our knowledge of the neurodegenerative disease epigenome.
Neurodegenerative diseases are devastating illnesses with little to no treatment options available. Among these, amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) are particularly dreadful. Approximately 90% of ALS and PD cases are considered sporadic, occurring without family history of the disease, while the remaining cases run in families and are generally linked to a specific gene mutation1,2. Interestingly, both of these diseases are associated with protein mislocalization and aggregation3,4,5<....
1. Transforming S. cerevisiae with neurodegenerative proteinopathy-associated protein constructs
To illustrate this method, we will take advantage of recently published results30. WT human FUS and TDP-43 were overexpressed for 5 h, while WT α-synuclein was overexpressed for 8 h. A ccdB construct was used as a vector negative control. Figure 2 shows growth suppression in solid and liquid cultures. Yeast was harvested as described and Western blotting with modification-specific antibodies was performed. Anti-total H3 was used a.......
The protocol described here provides a straightforward, expedient, and cost-effective way of categorizing genome-wide histone PTM changes correlated with neurodegenerative proteinopathies. While there are other models of ALS and PD, such as in vitro human cell lines and murine models32, S. cerevisiae remains attractive because of its ease of use. For instance, yeast models do not require use of a sterile hood, nor do they require the intensive training that goes along with cell c.......
We thank Royena Tanaz, Huda Yousuf, and Sadiqa Taasen for technical help. We are very grateful to Prof. James Shorter for the generous provision of reagents and intellectual assistance in the design of sucrose tuning experiments. Yeast plasmids were a generous gift from Prof. Aaron Gitler (including 303Gal-FUS; Addgene plasmid # 29614). Brooklyn College and the Advanced Science Research Center (CUNY) as well as an NIH NINDS Advanced Postdoctoral Transition Award (K22NS09131401) supported M.P.T.
....Name | Company | Catalog Number | Comments |
-His DO Supplement | Clontech | 630415 | |
10x Running Buffer | Mix: 141.65 g glycine (ThermoFisher BP381-1), 30.3 g Tizma base (Sigma-Aldrich T6066), 10 g sodium dodecyl sulfate (Sigma-Aldrich L3771), and 1 L deionized water, pH 8.8. | ||
12% Polyacrylamide Gels | BIO-RAD | 456-1041 | |
2-mercaptoethanol | Sigma-Aldrich | M3148 | |
Anti-acetyl-Histone H3 (Lys14) Primary Antibody | MilliporeSigma | 07-353 (Lot No. 2762291) | Dilution: 1/1000 |
Anti-acetyl-Histone H4 (Lys 16) Primary Antibody | Abcam | ab109463 (Lot No. GR187780) | Dilution: 1/2000 |
Anti-acetyl-Histone H4 (Lys12) Primary Antibody | Abcam | ab46983 (Lot No. GR71882) | Dilution: 1/5000 |
Anti-dimethyl-Histone H3 (Lys36) Primary Antibody | Abcam | ab9049 (Lot No. GR266894, GR3236147) | Dilution: 1/1000 |
Anti-Histone H3 Primary Antibody | Abcam | ab24834 (Lot No. GR236539, GR174196, GR3194335) | Nuclear Loading Control; Dilution: 1/2000 |
Anti-phospho-Histone H2B (Thr129) Primary Antibody | Abcam | ab188292 (Lot No. GR211874) | Dilution: 1/1000 |
Anti-phospho-Histone H3 (Ser10) Primary Antibody | Abcam | ab5176 (Lot No. GR264582, GR192662, GR3217296) | Dilution: 1/1000 |
BioPhotometer D30 | Eppendorf | 6133000010 | |
Cell Culture Dish (100 x 20 mm) | Eppendorf | 30702118 | |
Cell Culture Plate, 96 well | Eppendorf | 30730011 | |
Centrifuge 5804/5804 R/5810/5810 R | Eppendorf | 22625501 | |
Donkey Anti-Mouse IRDye 800 CW | LI-COR | 926-32212 (Lot No. C60301-05, C61116-02, C80108-05) | Dilution: 1/5000 |
Donkey Anti-Rabbit IRDye 860 RD | LI-COR | 926-68073 (Lot No. C60217-06, C70323-06, C70601-05, C80116-07) | Dilution: 1/2500 |
Ethanol | Sigma-Aldrich | E7023 | |
Extra thick blot paper (filter paper) | BIO-RAD | 1703968 | |
Galactose | Sigma-Aldrich | G0750 | Prepare 20% w/v stock solution. |
Glucose | Sigma-Aldrich | G8270 | Prepare 20% w/v stock solution. |
Glycerol | Sigma-Aldrich | G5516 | Prepare 50 % w/v solution. |
Immobilon-FL Transfer Membranes | MilliporeSigma | IPFL00010 | |
Lithium acetate dihydrate (LiAc) | Sigma-Aldrich | L4158 | Prepare a 1 M solution. |
Loading Dye | Mix: 1.2 g sodium dodecyl sulfate, 6 mg bromophenol blue (Sigma-Aldrich B8026), 4.7 mL glycerol, 1.2 mL 0.5M Trizma base pH 6.8, 0.93 g DL-Dithiothreitol (Sigma-Aldrich D0632), and 2.1 mL deionized water. | ||
Methanol | ThermoFisher | A412-4 | |
Mini-PROTEAN Tetra Vertical Electrophoeresis Cell | BIO-RAD | 1658004 | |
Multichannel pipet | Eppendorf | 2231300045 | |
NEB Restriction Enzyme Buffer 2.1, 10x | New England Bio Labs | 102855-152 | |
Nhe I Restriction Enzyme | New England Bio Labs | 101228-710 | |
Nuclease Free Water | Qiagen | 129114 | |
Odyssey Fc Imaging System | LI-COR Biosciences | 2800-03 | |
OmniTray Cell Culture Treated w/Lid Sterile, PS (86 x 128 mm) | ThermoFisher | 165218 | |
pAG303GAL-a-synuclein-GFP | Gift from A. Gitler | ||
pAG303GAL-ccdB | Addgene | 14133 | |
pAG303Gal-FUS | Addgene | 29614 | |
pAG303GAL-TDP-43 | Gift from A. Gitler | ||
Poly(ethylene glycol) (PEG) | Sigma-Aldrich | P4338 | Prepare a 50% w/v solution. |
Ponceau S Stain | Sigma-Aldrich | P3504 | Mix: 0.5 g 0.1% w/w Ponceau S dye, 5 mL 1% v/v acetic acid (Sigma-Aldrich 320099), and 500 mL deionized water. |
PowerPac Basic Power Supply | BIO-RAD | 164-5050 | |
Raffinose pentahydrate | Sigma-Aldrich | R7630 | Prepare 10% w/v stock solution. |
Salmon Sperm DNA | Agilent Tech | 201190 | |
SD-His plates | Mix: 20 g Agar (Sigma-Aldrich A1296), 0.77 g -His DO supplement, 6.7 g yeast Nitrogen Base w/o amino acids (ThermoFisher 291920), and 900 mL deionized water. | ||
SGal-His plates | Mix: 20 g Agar, 0.77 g -His DO supplement, 6.7 g yeast Nitrogen Base w/o amino acids, 100 mL galactose solution, and 900 mL deionized water. | ||
Sodium dodecyl sulfate Loading Buffer | Store at -20 oC. 6X, Mix: 1.2 g sodium dodecyl sulfate, 6 mg bromophenol blue, 0.93 g DL-Dithiothreitol, 2.1 mL deionized water, 4.7 mL glycerol, and 1.2 mL 0.5 M Trizma base, pH 6.8. | ||
Sodium hydroxide | Sigma-Aldrich | 221465 | Prepare 0.2 M solution. |
Sucrose | Sigma-Aldrich | 84097 | Prepare 20% w/v stock solution. |
TBS + 0.1% Tween 20 (TBST) | Mix: 100 mL 10X TBS, 1 mL Tween 20 (Sigma-Aldrich P7949), and 900 mL deionized water. | ||
TBS Blocking Buffer | LI-COR | 927-5000 | |
Trans-Blot SD Semi-Dry Electrophoretic Transfer Cell | BIO-RAD | 170-3940 | |
Transfer Buffer | Mix: 22.5 g glycine, 4.84 g Tizma base, 400 mL methanol, 1 g sodium dodecyl sulfate, and 1.6 L deionized water. | ||
Tris-Buffered Saline (TBS) | 10X, 7.6 pH, Solution: Mix 24 g Trizma base, and 88 g sodium chloride (Sigma-Aldrich S7653). Fill to 1 L with deionized water. | ||
WT 303 S. cerevisiae yeast | Gift from J. Shorter | ||
Yeast Extract Peptone Dextrose (YPD) | Sigma-Aldrich | Y1375 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved