A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol outlines experimental procedures to characterize genome-wide changes in the levels of histone post-translational modifications (PTM) occurring in connection with the overexpression of proteins associated with ALS and Parkinson's disease in Saccharomyces cerevisiae models. After SDS-PAGE separation, individual histone PTM levels are detected with modification-specific antibodies via Western blotting.
Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD), cause the loss of hundreds of thousands of lives each year. Effective treatment options able to halt disease progression are lacking. Despite the extensive sequencing efforts in large patient populations, the majority of ALS and PD cases remain unexplained by genetic mutations alone. Epigenetics mechanisms, such as the post-translational modification of histone proteins, may be involved in neurodegenerative disease etiology and progression and lead to new targets for pharmaceutical intervention. Mammalian in vivo and in vitro models of ALS and PD are costly and often require prolonged and laborious experimental protocols. Here, we outline a practical, fast, and cost-effective approach to determining genome-wide alterations in histone modification levels using Saccharomyces cerevisiae as a model system. This protocol allows for comprehensive investigations into epigenetic changes connected to neurodegenerative proteinopathies that corroborate previous findings in different model systems while significantly expanding our knowledge of the neurodegenerative disease epigenome.
Neurodegenerative diseases are devastating illnesses with little to no treatment options available. Among these, amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) are particularly dreadful. Approximately 90% of ALS and PD cases are considered sporadic, occurring without family history of the disease, while the remaining cases run in families and are generally linked to a specific gene mutation1,2. Interestingly, both of these diseases are associated with protein mislocalization and aggregation3,4,5,6. For instance, fused in sarcoma (FUS) and TAR DNA-binding protein 43 (TDP-43) are RNA binding proteins that mislocalize to the cytoplasm and aggregate in ALS7,8,9,10,11,12, while α-synuclein is the principle component of proteinaceous aggregates termed Lewy bodies in PD5,13,14,15.
Despite the extensive genome-wide association efforts in large patient populations, the overwhelming majority of ALS and PD cases remain unexplained genetically. Can epigenetics play a role in neurodegenerative disease? Epigenetics comprises changes in gene expression occurring without changes to underlying DNA sequence16. A main epigenetic mechanism involves the post translational modifications (PTMs) of histone proteins16. In eukaryotic cells, genetic material is tightly wrapped into chromatin. The base unit of chromatin is the nucleosome, consisting of 146 base pairs of DNA wrapped around a histone octamer, composed of four pairs of histones (two copies each of histones H2A, H2B, H3, and H4)17. Each histone has an N-terminal tail that protrudes out of the nucleosome and can be modified by the addition of various chemical moieties, usually on lysine and arginine residues18. These PTMs are dynamic, which means they can be easily added and removed, and include groups such as acetylation, methylation, and phosphorylation. PTMs control the accessibility of DNA to the transcriptional machinery, and thus help control gene expression18. For example, histone acetylation reduces the strength of the electrostatic interaction between the highly basic histone protein and the negatively charged DNA backbone, allowing the genes packed by acetylated histones to be more accessible and thus highly expressed19. More recently, the remarkable biological specificity of particular histone PTMs and their combinations has led to the histone code hypothesis20,21 in which proteins that write, erase, and read histone PTMs all act in concert to modulate gene expression.
Yeast is a very useful model to study neurodegeneration. Importantly, many neuronal cellular pathways are conserved from yeast to humans22,23,24. Yeast recapitulate cytotoxicity phenotypes and protein inclusions upon overexpression of FUS, TDP-43, or α-synuclein22,23,24,25,26. In fact, Saccharomyces cerevisiae models of ALS have been used to identify genetic risk factors in humans27. Furthermore, yeast overexpressing human α-synuclein allowed for the characterization of the Rsp5 network as a druggable target to ameliorate α-synuclein toxicity in neurons28,29.
Here, we describe a protocol exploiting Saccharomyces cerevisiae to detect genome-wide histone PTM changes associated with neurodegenerative proteinopathies (Figure 1). The use of S. cerevisiae is highly attractive because of its ease of use, low cost, and speed compared to other in vitro and animal models of neurodegeneration. Harnessing previously developed ALS and PD models22,23,25,26, we have overexpressed human FUS, TDP-43, and α-synuclein in yeast and uncovered distinct histone PTM changes occurring in connection with each proteinopathy30. The protocol that we describe here can be completed in less than two weeks from transformation to data analysis.
1. Transforming S. cerevisiae with neurodegenerative proteinopathy-associated protein constructs
2. Surveying colony growth suppression and storage in glycerol stocks
3. Overexpression of neurodegenerative proteinopathy associated proteins in S. cerevisiae
4. Cell lysis and western blotting to detect histone post-translational modifications
5. Data analysis and statistics
To illustrate this method, we will take advantage of recently published results30. WT human FUS and TDP-43 were overexpressed for 5 h, while WT α-synuclein was overexpressed for 8 h. A ccdB construct was used as a vector negative control. Figure 2 shows growth suppression in solid and liquid cultures. Yeast was harvested as described and Western blotting with modification-specific antibodies was performed. Anti-total H3 was used a...
The protocol described here provides a straightforward, expedient, and cost-effective way of categorizing genome-wide histone PTM changes correlated with neurodegenerative proteinopathies. While there are other models of ALS and PD, such as in vitro human cell lines and murine models32, S. cerevisiae remains attractive because of its ease of use. For instance, yeast models do not require use of a sterile hood, nor do they require the intensive training that goes along with cell c...
The authors have nothing to disclose.
We thank Royena Tanaz, Huda Yousuf, and Sadiqa Taasen for technical help. We are very grateful to Prof. James Shorter for the generous provision of reagents and intellectual assistance in the design of sucrose tuning experiments. Yeast plasmids were a generous gift from Prof. Aaron Gitler (including 303Gal-FUS; Addgene plasmid # 29614). Brooklyn College and the Advanced Science Research Center (CUNY) as well as an NIH NINDS Advanced Postdoctoral Transition Award (K22NS09131401) supported M.P.T.
Name | Company | Catalog Number | Comments |
-His DO Supplement | Clontech | 630415 | |
10x Running Buffer | Mix: 141.65 g glycine (ThermoFisher BP381-1), 30.3 g Tizma base (Sigma-Aldrich T6066), 10 g sodium dodecyl sulfate (Sigma-Aldrich L3771), and 1 L deionized water, pH 8.8. | ||
12% Polyacrylamide Gels | BIO-RAD | 456-1041 | |
2-mercaptoethanol | Sigma-Aldrich | M3148 | |
Anti-acetyl-Histone H3 (Lys14) Primary Antibody | MilliporeSigma | 07-353 (Lot No. 2762291) | Dilution: 1/1000 |
Anti-acetyl-Histone H4 (Lys 16) Primary Antibody | Abcam | ab109463 (Lot No. GR187780) | Dilution: 1/2000 |
Anti-acetyl-Histone H4 (Lys12) Primary Antibody | Abcam | ab46983 (Lot No. GR71882) | Dilution: 1/5000 |
Anti-dimethyl-Histone H3 (Lys36) Primary Antibody | Abcam | ab9049 (Lot No. GR266894, GR3236147) | Dilution: 1/1000 |
Anti-Histone H3 Primary Antibody | Abcam | ab24834 (Lot No. GR236539, GR174196, GR3194335) | Nuclear Loading Control; Dilution: 1/2000 |
Anti-phospho-Histone H2B (Thr129) Primary Antibody | Abcam | ab188292 (Lot No. GR211874) | Dilution: 1/1000 |
Anti-phospho-Histone H3 (Ser10) Primary Antibody | Abcam | ab5176 (Lot No. GR264582, GR192662, GR3217296) | Dilution: 1/1000 |
BioPhotometer D30 | Eppendorf | 6133000010 | |
Cell Culture Dish (100 x 20 mm) | Eppendorf | 30702118 | |
Cell Culture Plate, 96 well | Eppendorf | 30730011 | |
Centrifuge 5804/5804 R/5810/5810 R | Eppendorf | 22625501 | |
Donkey Anti-Mouse IRDye 800 CW | LI-COR | 926-32212 (Lot No. C60301-05, C61116-02, C80108-05) | Dilution: 1/5000 |
Donkey Anti-Rabbit IRDye 860 RD | LI-COR | 926-68073 (Lot No. C60217-06, C70323-06, C70601-05, C80116-07) | Dilution: 1/2500 |
Ethanol | Sigma-Aldrich | E7023 | |
Extra thick blot paper (filter paper) | BIO-RAD | 1703968 | |
Galactose | Sigma-Aldrich | G0750 | Prepare 20% w/v stock solution. |
Glucose | Sigma-Aldrich | G8270 | Prepare 20% w/v stock solution. |
Glycerol | Sigma-Aldrich | G5516 | Prepare 50 % w/v solution. |
Immobilon-FL Transfer Membranes | MilliporeSigma | IPFL00010 | |
Lithium acetate dihydrate (LiAc) | Sigma-Aldrich | L4158 | Prepare a 1 M solution. |
Loading Dye | Mix: 1.2 g sodium dodecyl sulfate, 6 mg bromophenol blue (Sigma-Aldrich B8026), 4.7 mL glycerol, 1.2 mL 0.5M Trizma base pH 6.8, 0.93 g DL-Dithiothreitol (Sigma-Aldrich D0632), and 2.1 mL deionized water. | ||
Methanol | ThermoFisher | A412-4 | |
Mini-PROTEAN Tetra Vertical Electrophoeresis Cell | BIO-RAD | 1658004 | |
Multichannel pipet | Eppendorf | 2231300045 | |
NEB Restriction Enzyme Buffer 2.1, 10x | New England Bio Labs | 102855-152 | |
Nhe I Restriction Enzyme | New England Bio Labs | 101228-710 | |
Nuclease Free Water | Qiagen | 129114 | |
Odyssey Fc Imaging System | LI-COR Biosciences | 2800-03 | |
OmniTray Cell Culture Treated w/Lid Sterile, PS (86 x 128 mm) | ThermoFisher | 165218 | |
pAG303GAL-a-synuclein-GFP | Gift from A. Gitler | ||
pAG303GAL-ccdB | Addgene | 14133 | |
pAG303Gal-FUS | Addgene | 29614 | |
pAG303GAL-TDP-43 | Gift from A. Gitler | ||
Poly(ethylene glycol) (PEG) | Sigma-Aldrich | P4338 | Prepare a 50% w/v solution. |
Ponceau S Stain | Sigma-Aldrich | P3504 | Mix: 0.5 g 0.1% w/w Ponceau S dye, 5 mL 1% v/v acetic acid (Sigma-Aldrich 320099), and 500 mL deionized water. |
PowerPac Basic Power Supply | BIO-RAD | 164-5050 | |
Raffinose pentahydrate | Sigma-Aldrich | R7630 | Prepare 10% w/v stock solution. |
Salmon Sperm DNA | Agilent Tech | 201190 | |
SD-His plates | Mix: 20 g Agar (Sigma-Aldrich A1296), 0.77 g -His DO supplement, 6.7 g yeast Nitrogen Base w/o amino acids (ThermoFisher 291920), and 900 mL deionized water. | ||
SGal-His plates | Mix: 20 g Agar, 0.77 g -His DO supplement, 6.7 g yeast Nitrogen Base w/o amino acids, 100 mL galactose solution, and 900 mL deionized water. | ||
Sodium dodecyl sulfate Loading Buffer | Store at -20 oC. 6X, Mix: 1.2 g sodium dodecyl sulfate, 6 mg bromophenol blue, 0.93 g DL-Dithiothreitol, 2.1 mL deionized water, 4.7 mL glycerol, and 1.2 mL 0.5 M Trizma base, pH 6.8. | ||
Sodium hydroxide | Sigma-Aldrich | 221465 | Prepare 0.2 M solution. |
Sucrose | Sigma-Aldrich | 84097 | Prepare 20% w/v stock solution. |
TBS + 0.1% Tween 20 (TBST) | Mix: 100 mL 10X TBS, 1 mL Tween 20 (Sigma-Aldrich P7949), and 900 mL deionized water. | ||
TBS Blocking Buffer | LI-COR | 927-5000 | |
Trans-Blot SD Semi-Dry Electrophoretic Transfer Cell | BIO-RAD | 170-3940 | |
Transfer Buffer | Mix: 22.5 g glycine, 4.84 g Tizma base, 400 mL methanol, 1 g sodium dodecyl sulfate, and 1.6 L deionized water. | ||
Tris-Buffered Saline (TBS) | 10X, 7.6 pH, Solution: Mix 24 g Trizma base, and 88 g sodium chloride (Sigma-Aldrich S7653). Fill to 1 L with deionized water. | ||
WT 303 S. cerevisiae yeast | Gift from J. Shorter | ||
Yeast Extract Peptone Dextrose (YPD) | Sigma-Aldrich | Y1375 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved