A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
This manuscript describes an experimental protocol for evaluating the morphological characteristics and functional status of ribbon synapses in normal mice. The present model is also suitable for noise-induced and age-related cochlear synaptopathy-restricted models. The correlative results of previous mouse studies are also discussed.
Cochlear inner hair cells (IHCs) transmit acoustic signals to spiral ganglion neurons (SGNs) through ribbon synapses. Several experimental studies have indicated that hair cell synapses may be the initial targets in sensorineural hearing loss (SNHL). Such studies have proposed the concept of cochlear "synaptopathy", which refers to alterations in ribbon synapse number, structure, or function that result in abnormal synaptic transmission between IHCs and SGNs. While cochlear synaptopathy is irreversible, it does not affect the hearing threshold. In noise-induced experimental models, restricted damage to IHC synapses in select frequency regions is employed to identify the environmental factors that specifically cause synaptopathy, as well as the physiological consequences of disturbing this inner ear circuit. Here, we present a protocol for analyzing cochlear synaptic morphology and function at a specific frequency region in adult mice. In this protocol, cochlear localization of specific frequency regions is performed using place-frequency maps in conjunction with cochleogram data, following which the morphological characteristics of ribbon synapses are evaluated via synaptic immunostaining. The functional status of ribbon synapses is then determined based on the amplitudes of auditory brainstem response (ABR) wave I. The present report demonstrates that this approach can be used to deepen our understanding of the pathogenesis and mechanisms of synaptic dysfunction in the cochlea, which may aid in the development of novel therapeutic interventions.
Frequencies in the range of approximately 20‒20,000 Hz can be perceived as auditory stimuli by humans. Human hearing is normally most sensitive near 1,000 Hz, where average sound pressure level is 20 μPa in young adults (i.e., 0 decibels of sound pressure level [dB SPL]). In some pathological conditions, hearing loss is restricted to specific frequencies. For example, in the early stages of noise-induced hearing loss (NIHL), a “notch” (i.e., hearing threshold elevation) can be observed in the audiogram at 4 kHz1. Along the mammalian cochlear partition, its gradations of stiffness and mass produce an exponential frequency ....
All procedures were carried out in accordance with the NRC/ILAR Guide for the Care and Use of Laboratory Animals (8th Edition). The study protocol was approved by the Institutional Animal Care and Use Committee of Capital Medical University, Beijing, China.
1. Animal Selection
ABR hearing tests were performed for 10 C57BL/6J mice (8 weeks of age) under anesthesia. ABRs were elicited using tone burst stimuli at 4, 8, 16, 32, and 48 kHz. The hearing threshold of each animal was visually detected by distinguishing at least one clear waveform in the ABR. All mice exhibited ABR thresholds in response to tone bursts, ranging between 25 and 70 dB SPL depending on the frequency of the stimulus. Our results indicated that the hearing threshold was lowest at 16 kHz (Figure 1
Since cochlear synaptopathy was first characterized in adult mice with a temporary threshold shift (TTS) induced by 8‒16 kHz octave band noise at 100 dB SPL for 2 h31, researchers have increasingly investigated the effects of synaptopathy in various mammals, including monkeys and humans32,33. In addition to noise exposure, several other conditions have been associated with cochlear synaptopathy (e.g., aging, the use of ototoxic drugs.......
This work was supported by the National Natural Science Foundation of China (81770997, 81771016, 81830030); the joint funding project of Beijing Natural Science Foundation and Beijing Education Committee (KZ201810025040); the Beijing Natural Science Foundation (7174291); and the China Postdoctoral Science Foundation (2016M601067).
....Name | Company | Catalog Number | Comments |
Ketamine hydrochloride | Gutian Pharmaceutical Co., Ltd., Fujian, China | H35020148 | 100mg/kg |
Xylazine hydrochloride | Sigma-Aldrich, St. Louis, MO, USA | X-1251 | 10mg/kg |
TDT physiology apparatus | Tucker-Davis Technologies, Alachua, FL, USA | Auditory Physiology System III | |
SigGen/BioSig software | Tucker-Davis Technologies, Alachua, FL, USA | Auditory Physiology System III | |
Electric Pad | Pet Fun | 11072931136 | |
Dumont forceps 3# | Fine Science Tools, North Vancouver, B.C., Canada | 0203-3-PO | |
Dumont forceps 5# | Fine Science Tools, North Vancouver, B.C., Canada | 0209-5-PO | |
Stereo dissection microscope | Nikon Corp., Tokyo, Japan | SMZ1270 | |
Goat serum | ZSGB-BIO, Beijing,China | ZLI-9021 | |
Anti-glutamate receptor 2, extracellular, clone 6C4 | Millipore Corp., Billerica, MA, USA | MAB397 | mouse |
Purified Mouse Anti-CtBP2 | BD Biosciences, Billerica, MA, USA | 612044 | mouse |
Alexa Fluor 568 goat anti-mouse IgG1antibody | Thermo Fisher Scientific Inc., Waltham, MA, USA | A21124 | goat |
Alexa Fluor 488 goat anti-mouse IgG2a antibody | Thermo Fisher Scientific Inc., Waltham, MA, USA | A21131 | goat |
Mounting medium containing DAPI | ZSGB-BIO, Beijing,China | ZLI-9557 | |
Confocal fluorescent microscopy | Leica Microsystems, Wetzlar, Germany | TCS SP8 II | |
Image Pro Plus software | Media Cybernetics, Bethesda, MD, USA | version 6.0 | |
Professional diagnostic pocket otoscope | Lude Medical Apparatus and Instruments Trade Co., Ltd., Shanghai,China | HS-OT10 | |
Needle electrode | Friendship Medical Electronics Co., Ltd., Xi'an,China | 1029 | 20 mm, 28 G |
Closed-field speaker | Tucker-Davis Technologies, Alachua, FL, USA | CF1 |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved