A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Using uniaxial strain combined with spin-polarized scanning tunneling microscopy, we visualize and manipulate the antiferromagnetic domain structure of Fe1+yTe, the parent compound of iron-based superconductors.
The quest to understand correlated electronic systems has pushed the frontiers of experimental measurements toward the development of new experimental techniques and methodologies. Here we use a novel home-built uniaxial-strain device integrated into our variable temperature scanning tunneling microscope that enables us to controllably manipulate in-plane uniaxial strain in samples and probe their electronic response at the atomic scale. Using scanning tunneling microscopy (STM) with spin-polarization techniques, we visualize antiferromagnetic (AFM) domains and their atomic structure in Fe1+yTe samples, the parent compound of iron-based superconductors, and demonstrate how these domains respond to applied uniaxial strain. We observe the bidirectional AFM domains in the unstrained sample, with an average domain size of ~50-150 nm, to transition into a single unidirectional domain under applied uniaxial strain. The findings presented here open a new direction to utilize a valuable tuning parameter in STM, as well as other spectroscopic techniques, both for tuning the electronic properties as for inducing symmetry breaking in quantum material systems.
High-temperature superconductivity in cuprates and iron-based superconductors is an intriguing state of quantum matter1,2. A major challenge in understanding superconductivity is the locally intertwined nature of various broken symmetry states, such as electronic nematic and smectic phases (that break rotational and translational symmetries of the electronic states), with superconductivity3,4,5,6,7. Manipulation and deliberate tuning of these broken symmetry states is a key objective toward understanding and controlling superconductivity.
Controlled strain, both uniaxial and biaxial, is a well-established technique to tune the collective electronic states in condensed matter systems8,9,10,11,12,13,14,15,16,17,18,19,20,21,22. This clean tuning, without the introduction of disorder through chemical doping, is commonly used in various kinds of experiments to tune bulk electronic properties23,24,25,26. For example, uniaxial pressure has proved to have an immense effect on superconductivity in Sr2RuO413 and cuprates27 and on the structural, magnetic, and nematic phase transitions of iron-based superconductors10,14,28,29 and was recently demonstrated in tuning the topological states of SmB624. However, the use of strain in surface-sensitive techniques, such as STM and angle-resolved photoemission spectroscopy (ARPES), has been limited to in situ-grown thin films on mismatched substrates26,30. The major challenge with applying strain to single crystals in surface-sensitive experiments is the need to cleave the strained samples in ultrahigh vacuum (UHV). In the last few years, an alternative direction has been to epoxy a thin sample on piezo stacks9,10,18,31 or on plates with different coefficients of thermal expansion19,32. Yet in both cases, the magnitude of the applied strain is quite limited.
Here we demonstrate the use of a novel mechanical uniaxial-strain device that allows researchers to strain a sample (compressive strain) without constraints and simultaneously visualize its surface structure using STM (see Figure 1). As an example, we use single crystals of Fe1+yTe, where y = 0.10, the parent compound of the iron chalcogenide superconductors (y is the excess iron concentration). Below TN = ~60 K, Fe1+yTe transitions from a high-temperature paramagnetic state into a low-temperature antiferromagnetic state with a bicollinear stripe magnetic order26,33,34 (see Figure 3A,B). The magnetic transition is further accompanied by a structural transition from tetragonal to monoclinic26,35. The in-plane AFM order forms detwinned domains with the spin structure pointing along the long b-direction of the orthorhombic structure34. By visualizing the AFM order with spin-polarized STM, we probe the bidirectional domain structure in unstrained Fe1+yTe samples and observe their transition into a single large domain under applied strain (see the schematic in Figure 3C-E). These experiments show the successful surface tuning of the single crystals using the uniaxial-strain device presented here, the cleaving of the sample, and the simultaneous imaging of its surface structure with the scanning tunneling microscope. Figure 1 shows the schematic drawings and pictures of the mechanical strain device.
NOTE: The U-shaped body is made of 416-grade stainless steel, which is stiff and has a low coefficient of thermal expansion (CTE), ~9.9 μm/(m∙°C), as compared to ~17.3 μm/(m∙°C) for 304-grade stainless steel.
1. Mechanical uniaxial-strain device
2. Application of the strain
3. Transfer of the device to the scanning tunneling microscope head
4. Carrying out the STM experiments
STM topographs were measured in constant current mode with a setpoint bias of -12 meV applied to the sample and a setpoint current of -1.5 nA collected on the tip. Pt-Ir tips were used in all experiments. To achieve spin-polarized STM, the scanning tunneling microscope tip has to be coated with magnetic atoms, which can be quite challenging. In this case of studying Fe1+yTe, the sample itself provides a simple means of achieving this. The excess irons (y...
All operations required to move the samples into and inside the STM are carried out using sets of arm manipulators. The STM is maintained at low temperatures by liquid nitrogen and liquid helium, and the sample cools down for at least 12 h before being approached. This allows the sample and microscope temperature to reach thermal equilibrium. To isolate electric and acoustic noise, the STM is placed in an acoustic and radio frequency shielded room. The microscope head is further suspended from springs for optimized instr...
The authors have nothing to disclose.
P.A. acknowledges support from the U.S. National Science Foundation (NSF) CAREER under award No. DMR-1654482. Material synthesis was carried out with the support of the Polish National Science Centre grant No 2011/01/B/ST3/00425.
Name | Company | Catalog Number | Comments |
Belleville spring disks | McMaster Carr | ||
Fe(1.1)Te | Single Crystal | ||
H20E | Epoxy Technology | ||
H74F | Epoxy Technology | ||
Micrometer screws | McMaster Carr | ||
Stainless Steel sheets (416) | McMaster Carr |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved