The goal of the protocol presented here is to generate and sample trajectories of configurations of liquid water molecules around catalytic species on a flat transition metal surface. The sampled configurations can be used as starting structures in quantum mechanics-based methods.
A significant number of heterogeneously-catalyzed chemical processes occur under liquid conditions, but simulating catalyst function under such conditions is challenging when it is necessary to include the solvent molecules. The bond breaking and forming processes modeled in these systems necessitate the use of quantum chemical methods. Since molecules in the liquid phase are under constant thermal motion, simulations must also include configurational sampling. This means that multiple configurations of liquid molecules must be simulated for each catalytic species of interest. The goal of the protocol presented here is to generate and sample trajectories of configurations of liquid water molecules around catalytic species on flat transition metal surfaces in a way that balances chemical accuracy with computational expense. Specifically, force field molecular dynamics (FFMD) simulations are used to generate configurations of liquid molecules that can subsequently be used in quantum mechanics-based methods such as density functional theory or ab initio molecular dynamics. To illustrate this, in this manuscript, the protocol is used for catalytic intermediates that could be involved in the pathway for the decomposition of glycerol (C3H8O3). The structures that are generated using FFMD are modeled in DFT in order to estimate the enthalpies of solvation of the catalytic species and to identify how H2O molecules participate in catalytic decompositions.
Modeling molecular phenomena involved in heterogeneous catalysis under liquid conditions is necessary for understanding catalytic function; however, this remains challenging because it requires a fine balance between chemical accuracy and computational expense. In general, since catalysis involves the breaking and forming of chemical bonds, quantum mechanics must be used to at least some degree; however, long simulations are challenging in quantum mechanics, as they require significant computer resources. Since molecules in the liquid phase are under constant thermal motion, simulations must also include configurational sampling, i.e., they must incorporate multiple spatial arrangements of the liquid molecules, as each different spatial arrangement (i.e., each configuration) has a different energy. This means that multiple configurations of liquid molecules must be simulated for each catalytic species of interest. These needs – to use quantum mechanics and to perform multiple calculations per catalytic species – can render modeling in heterogeneous catalysis under liquid phase computationally intractable. The purpose of the method described herein is to enable computationally tractable simulations of phenomena in heterogeneous catalysis under liquid phase.
We are particularly interested in heterogeneously catalyzed reactions that are carried out under liquid water. Water molecules have significant influence on catalytic phenomena, such as interacting with catalytic species (e.g., via dispersion forces and hydrogen bonding)1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23, participating in catalytic reactions1,7,8,9,15,21,22,24,25,26,27, and influencing reaction pathways and/or catalytic rates1,11,12,15,18,23,25,27,28,29,30,31. Modeling of these phenomena has been performed using QM and/or ab initio molecular dynamics (AIMD)1,2,6,7,14,22,25,27,28,32,33,34, force field molecular dynamics (FFMD)35, and quantum mechanics/molecular mechanics (QM/MM)10. In AIMD and FFMD, the atoms in the system are moved pursuant to Newton’s equations of motion according to the forces acting upon them. In AIMD, the system energy and forces are calculated with quantum mechanics, whereas in FFMD, the system energy and forces are calculated using force fields, which are algebraic expressions that are parameterized based on experimental or QM data. In QM/MM, the portion of the system where the bond breaking and forming occurs is calculated with QM, and the remainder of the system is calculated with MM, which employs force fields. Because they directly employ QM, AIMD and QM/MM are better suited for capturing the bond breaking and forming that occurs in aqueous phase heterogeneous catalysis; however, FFMD is significantly more computationally tractable and thus better suited for generating the configurations of liquid H2O molecules. The method presented in this protocol balances chemical accuracy and computational expense by employing a combination of QM and FFMD.
Specifically, this method uses FFMD simulations for generating configurations of liquid H2O and QM to calculate system energies. FFMD is carried out using LAMMPS.36 The force fields used in FFMD in this work employ Lennard-Jones + Coulomb (LJ+C) potentials, where the LJ parameters have been taken from the TIP3P/CHARMM model37 for H2O, the universal force field38 (UFF) for Pt, and the OPLS-AA force field39 for catalytic species, and the Coulomb parameters have been taken from the TIP3P/CHARMM37 model for H2O and the OPLS-AA force field39 for catalytic species. The Coulomb parameters for Pt atoms have been set to 0. QM calculations are performed using the VASP code40,41,42, which is a density functional theory (DFT) code. Water molecule insertions are performed with a code developed in-house called Monte Carlo Plug-in for Quantum Methods (MCPliQ). File conversions from VASP to LAMMPS in this protocol are performed with the Visual Molecular Dynamics (VMD) software43.
The protocol is intended to generate configurations of liquid water molecules around catalytic species on flat transition metal surfaces at low coverage. Coverage is denoted θ and defined as the number of adsorbates per surface metal atom (i.e., the number of surface adsorbates normalized by the number of metal atoms in the topmost layer of the metal slab in the catalyst model). In this manuscript, low coverage is defined as θ ≤ 1/9 monolayer (ML), where 1 ML means one catalytic species per surface metal atom. The catalyst models should be placed in periodic simulation boxes. The simulation boxes do not have to be cubes. This manuscript demonstrates the use of the protocol for generating configurations of liquid H2O that can be used to calculate quantities of interest in aqueous phase heterogeneous catalysis.
This protocol requires that the user has access to installed and working versions of the VASP, MCPliQ, LAMMPS, and VMD software. More information about VASP (https://www.vasp.at/), LAMMPS (https://Lammps.sandia.gov/), and VMD (https://www.ks.uiuc.edu/Research/vmd/) are available on their respective websites. The MCPliQ software is documented at https://github.com/getman-research-group/JoVE_article, along with all input files and Python scripts mentioned in this protocol. This protocol assumes that the executables and scripts mentioned within will be run on a high-performance research computer and are installed in a directory that is in the user’s $PATH variable. If an executable or script is placed in a location that is not in the user’s $PATH, then the path to the executable must be included to execute it. Executables and scripts are executed in steps 2.1.2, 2.2.1, 2.2.8, 3.1, 4.2, 5.2, and 6.1.2. For example, to execute the MCPliQ code in step 2.1.2 from a directory that is not in the user’s $PATH, the user would type $PATHTOMCPLIQ/mcpliq at the command-line interface instead of mcpliq, where $PATHTOMCPLIQ is the location where the mcpliq executable has been stored (e.g., $PATHTOMCPLIQ might be ~/bin). Before starting this protocol, all executables and scripts should be given executable permissions (e.g., in Linux, this could be done by typing chmod +x mcpliq at the command-line interface from the directory where the mcpliq executable is stored). Further, any modules required by any of the software or scripts should be loaded (these dependencies will be specific to individual installations of the various software and the computer where the simulations will be run).
1. Generate the adsorbate structure
2. Add explicit H2O molecules
3. Extract the proper height of the supercell
4. Generate configurations of H2O molecules
5. Determine the hydrogen bond lifetime for proper time sampling
6. Sample configurations of liquid H2O molecules
One use of this protocol is to calculate the energies of interaction between the liquid water and catalytic species, i.e., ΔEint35:
∆Eint=ECatalytic species+H2O+EClean catalyst surface-ECatalytic species-EClean catalyst surface+H2O
where ECatalytic species+H2O is the energy of a configuration of H2O molecules around a catalytic species on a metal surface, EClean catalyst surface is the energy of the clean catalyst surface in vacuum, ECatalytic species is the energy of the catalytic species on a metal surface in vacuum, and EClean catalyst surface+H2O is the energy of the configuration of H2O over the catalyst surface with the catalytic species removed. The positions of the H2O molecules used to calculate ECatalytic species+H2O and EClean catalyst surface+H2O should be identical. All values of E are calculated using the VASP code. The quantity ΔEint includes all of the physical and chemical interactions between all of the molecules in the liquid water structure and the catalytic species and gives a reasonable estimate of the enthalpy of solvation of the catalytic species, which is needed to calculate its free energy of solvation and total free energy. Table 1 provides values for ΔEint calculated for species on a Pt(111) catalyst surface with chemical formulas equal to CxHyOz in units of eV (1 eV = 96.485 kJ/mol). The values were calculated at coverages ≤1/9 ML.35,46 The values reported are the averages taken over 10 configurations of liquid H2O, and the uncertainties are reported as standard deviations. All the values are negative, indicating favorable interactions with water.
Another application of this protocol is to generate starting structures for AIMD. Movie 1 is a movie of an AIMD trajectory that was started from a configuration generated by this protocol. At the start of this movie, a COH adsorbate is shown on a Pt(111) surface under a structure of liquid H2O. One H2O molecule is emphasized, which formed a hydrogen bond with COH. Over the course of the movie, this H2O molecule abstracts the proton from the COH adsorbate and deposits a second hydrogen atom on the Pt(111) surface. The H2O molecule thus helps to catalyze the reaction COH* + * → CO* + H*, where the *s indicate catalytic sites. This simulation highlights the main strength and the main purpose of the multiscale sampling method described herein. Numerous configurations of H2O molecules are generated with FFMD, due to its strength in computational tractability. However, a limitation of FFMD is that it cannot capture bond breaking and forming unless a reactive force field is implemented. AIMD uses quantum mechanics to calculate energies and thus can capture bond breaking and forming. However, AIMD is too computationally demanding to generate all of the configurations of H2O molecules necessary to ensure sufficient sampling has been achieved. Thus, this protocol combines the two methods.
The structures of liquid H2O molecules generated by this procedure are dependent on input settings. Setting these improperly can have unintended influences on the water structures. For example, when the intermolecular distances become too small or when other parameters in the molecular dynamics input files are set improperly or take on unphysical values, the water structure can become unreasonable. Under these circumstances, the structure of water will “blow up” unintendedly during the FFMD trajectory. Figure 1 shows an example of this. The snapshot on the left-hand side is the starting structure for a FFMD run, and the snapshot on the right-hand side is a snapshot taken within 1 ps of starting the simulation. As can be seen, the H2O molecules have moved far away from the surface. This is caused by improper settings made in the simulation input files and is not a structure that is likely to occur in reality.
Figure 1: Example of a negative result. The force field molecular dynamics simulation “blows up” due to an unphysical setting or value. Left hand image: The starting geometry of the Pt(111) surface, adsorbate, and liquid water structure. Right hand image: The geometry of the Pt(111) surface, adsorbate, and liquid water structure less than 1 ps later. In the right-hand image, the H2O molecules have separated from the surface due to unphysically large forces. Please click here to view a larger version of this figure.
Movie 1: Ab initio molecular dynamics (AIMD) simulation initiated from a configuration generated in multiscale sampling. A H2O molecule that is originally hydrogen bonded to a COH adsorbate on a Pt(111) surface abstracts the proton from COH and deposits a second hydrogen on the Pt(111) surface. This bond breaking and forming event can be captured by AIMD but not with force field molecular dynamics (FFMD) unless a reactive force field is used. The initial configuration of H2O molecules used in this AIMD simulation was generated using FFMD as described in this manuscript. Please click here to view this video. (Right-click to download.)
Catalytic Species | ∆Eint (eV) |
COH | -0.70 ± 0.07 |
CO | -0.03 ± 0.03 |
CH2OH | -0.64 ± 0.12 |
CHO-CHOH-CH2OH | -0.93 ± 0.22 |
COH-COH-CH2OH | -0.87 ± 0.23 |
COH-CHOH-COH | -1.72 ± 0.26 |
CHOH-COH-CO | -1.57 ± 0.25 |
CHO-CO-CO | -0.31 ± 0.19 |
Table 1: Water-catalytic species interaction energy results. Interaction energies in eV calculated for eight CxHyOz adsorbates on Pt(111). Values reported are the averages taken over multiple configurations of liquid H2O. The uncertainties are the standard deviations of the averages. 1 eV = 96.485 kJ/mol.
The method as presented was selected for its ease of implementation, but multiple customizations could be made. For one, the force fields used in the FFMD simulations can be modified. Changing the force field parameters and/or potentials can be done by editing the LAMMPS input and data files. Similarly, solvents other than H2O could be employed. To make this modification, the desired solvent molecule would need to be inserted starting from step 2.1.1, and the LAMMPS input files would need to be edited to incorporate the appropriate potentials and parameters. Inserting the new solvent molecule would also require supplying the internal coordinates of the solvent molecule in a .txt file analogous to the water.txt file.
Another modification that could be made is to modify the area of the surface slab. The results discussed in this manuscript employed 3 Pt x 3 Pt or 4 Pt x 4 Pt surface slabs, which have surface areas less than 120 Å2. As the slab surface area increases, the computational expense also increases. Computational expense has the largest impact on section 5 of this protocol. If the data processing steps in section 5 become computationally prohibitive, big data post processing strategies such as those discussed in Li et al. 201845 can be employed.
Possible sources of uncertainty for this procedure include the force field employed, the sampling method, and the sampling frequency. The water structure is determined by the force field that is used, meaning that the choice of force field could influence the specific configurations of H2O molecules. Our group has assessed how the choices of force field for H2O molecules and Pt atoms influence the interaction energies calculated in FFMD and found that the choice of force field contributes less than 0.1 eV to this interaction energy. Another source of uncertainty is the sampling method, which influences the specific configurations that are used to calculate a quantity of interest. Our group has compared the performance of the “time sampling” method presented in this protocol with an “energy sampling” method, which is biased to lower energy configurations of H2O molecules, on the interaction energies calculated in DFT and found both of these sampling methods give statistically equal values35,46. The sampling frequency can also influence the results. We have assessed how increasing the number of configurations from 10 to 30,000 influences the average interaction energies calculated in FFMD for 40 different C3HxO3 adsorbates and found that the sampling frequency contributes less than 0.1 eV to the average interaction energy44.
The main limitation to this method is that the adsorbates are approximated by the structures under vacuum during the FFMD simulations. In reality, the adsorbates would exhibit conformational changes (bond stretches, angle bends, torsional motions, etc.) due to normal thermal movements, including interactions with solvent molecules. Attempts to include conformational changes of adsorbates into the FFMD simulations would require detailed development of force fields for catalytic surface adsorbates, i.e., which comprise terms that describe bond stretches, angle bends, and torsional terms, amongst others. As a future direction of this protocol, we are developing such force fields for adsorbates at solid surfaces, which we will use to determine the extent to which using rigid adsorbates influences the results.
This research was funded by the National Science Foundation through award number CBET-1438325. Fellowship support for CJB through NASA Training Grant NX14AN43H is gratefully acknowledged. Simulations were performed on the Palmetto Supercomputer Cluster, which is maintained by the Cyberinfrastructure Technology Group at Clemson University. We thank Dr. Paul J. Meza-Morales for testing the protocol.
Name | Company | Catalog Number | Comments |
VASP software | Computational Materials Physics, Dept. of Physics, University of Vienna | vasp.5.4.4 | Standard parallel VASP executable in the newest version. |
LAMMPS software | Sandia National Laboratory | 31Mar17-dp | Double-precision, parallel LAMMPS executable from 31 March 2017. |
VMD software | Theoretical and Computational Biophysics Group, University of Illinois at Urbana-Champaign | 1.9.3 | Standard VMD executable in the newest version. |
MCPliQ software | Getman Research Group, Dept. of Chemical and Biomolecular Engineering, Clemson University | Executable and input files for the MCPliQ software availabe from the Getman Research Group GitHub page. | |
JoVE article scripts | Getman Research Group, Dept. of Chemical and Biomolecular Engineering, Clemson University | Python scripts for this JoVE manuscript available from the Getman Research Group GitHub page. | |
H2O PDB file | Getman Research Group, Dept. of Chemical and Biomolecular Engineering, Clemson University or RCSB Protein Data Bank | PDB file for a water molecule, available from the Getman Research Group GitHub page or at http://www.rcsb.org/ligand/HOH. |
Explore More Articles
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved