A subscription to JoVE is required to view this content. Sign in or start your free trial.
This protocol describes a detailed procedure for resuspending and culturing human stem cell derived neurons that were previously differentiated from neural progenitors in vitro for multiple weeks. The procedure facilitates imaging-based assays of neurites, synapses, and late-expressing neuronal markers in a format compatible with light microscopy and high-content screening.
Neurons differentiated in two-dimensional culture from human pluripotent stem-cell-derived neural progenitor cells (NPCs) represent a powerful model system to explore disease mechanisms and carry out high content screening (HCS) to interrogate compound libraries or identify gene mutation phenotypes. However, with human cells the transition from NPC to functional, mature neuron requires several weeks. Synapses typically start to form after 3 weeks of differentiation in monolayer culture, and several neuron-specific proteins, for example the later expressing pan-neuronal marker NeuN, or the layer 5/6 cerebral cortical neuron marker CTIP2, begin to express around 4-5 weeks post-differentiation. This lengthy differentiation time can be incompatible with optimal culture conditions used for small volume, multi-well HCS platforms. Among the many challenges are the need for well-adhered, uniformly distributed cells with minimal cell clustering, and culture procedures that foster long-term viability and functional synapse maturation. One approach is to differentiate neurons in a large volume format, then replate them at a later time point in HCS-compatible multi-wells. Some main challenges when using this replating approach concern reproducibility and cell viability, due to the stressful disruption of the dendritic and axonal network. Here we demonstrate a detailed and reliable procedure for enzymatically resuspending human induced pluripotent stem cell (hiPSC)-derived neurons after their differentiation for 4-8 weeks in a large-volume format, transferring them to 384-well microtiter plates, and culturing them for a further 1-3 weeks with excellent cell survival. This replating of human neurons not only allows the study of synapse assembly and maturation within two weeks from replating, but also enables studies of neurite regeneration and growth cone characteristics. We provide examples of scalable assays for neuritogenesis and synaptogenesis using a 384-well platform.
Human pluripotent stem cell (hiPSC)-derived neurons are increasingly relevant in the areas of basic research, drug development, and regenerative medicine. Workflows and procedures to optimize their culture and maintenance, and improve the efficiency of differentiation into specific neuronal subtypes, are evolving rapidly1,2. To improve the utility and cost-effectiveness of human stem cell-derived neurons as model systems amenable to high-content analyses in drug discovery and target validation, it is useful to decrease the culturing time required to generate mature, functional neurons, while retaining maximum ....
1. Differentiation Period Prior to Replating
The replating of hiPSCs-derived neurons that have been differentiated for multiple weeks offers several advantages. However, detaching and replating differentiated neurons that have long, interconnected dendrites and axons (Figure 1A) can result in a high fraction of irreversibly damaged neurons.
As described in the protocol section, we used incubation with a proteolytic enzyme to detach the neurons from the substrate. Typically, due to their thic.......
We have demonstrated a straight-forward procedure for the resuspension and replating of human neuronal cultures that optimizes viability, differentiation success, and subcellular imaging in a manner that is compatible with high content screening platforms, and other assays relevant to drug discovery. Figure 6 illustrates the overall workflow and examples of such applications.
Although here we focused on hiPSC-derived neurons that are directed toward a cortical neu.......
This work is a component of the National Cooperative Reprogrammed Cell Research Groups (NCRCRG) to study mental illness and was supported by NIH grant U19MH107367. Initial work was also supported by NIH grant NS070297. We thank Drs. Carol Marchetto and Fred Gage, The Salk Institute, for providing the WT 126 line of neural progenitor cells, and Drs. Eugene Yeo and Lawrence Goldstein, UC San Diego for providing the CVB WT24 line of neural progenitor cells. We thank Deborah Pre in the laboratory of Dr. Anne Bang, Sanford Burnham Prebys Medical Discovery Institute, for useful discussions.
....Name | Company | Catalog Number | Comments |
Post Replating Media | |||
L-Ascorbic Acid | Sigma | A4403 | Add 1ml of 200mM stock to 1L of N2B27 media |
dibutyryl-cAMP | Sigma | D0627 | Add 1 µM |
Human BDNF | Peprotech | 450-02 | 10 ng/ml final concentration |
B27 (50X) | Thermofisher Scientific | 17504044 | Add 20 ml to 1L N2B27 media |
DMEM/F12 with Glutamax | Thermofisher Scientific | 31331093 | Add N2 and distribute in 50 mL conicals; parafilm wrap lids |
Human GDNF | Peprotech | 450-10 | 10 ng/ml final concentration |
Glutamax | Thermofisher Scientific | 35050038 | Add 10 ml to 1L N2B27 media; glutamine supplement |
Mouse Laminin | Sigma | P3655-10mg | Add 100 µl to 50 mL N2B27 |
MEM Nonessential Amino Acids | Thermofisher Scientific | 11140035 | Add 5ml to 1L N2B27 media |
N2 (100X) Supplement | Life Technologies | 17502048 | Add 5ml to 500mL media |
Neurobasal A Media | Thermofisher Scientific | 10888022 | Combine with DMEM/F12 to generate N2B27 media for CVB wt cells; neural basal A media |
Neurobasal Media | Thermofisher Scientific | 21103049 | for WT126 cells; neural basal media |
SM1 Supplement | StemCell Technologies | 5711 | Add 1:50 to media |
sodium bicarbonate | Thermofisher Scientific | 25080-094 | Add 10ml to 1L N2B27 media |
Plate Preparation | |||
10cm Tissue Culture Dishes | Fisher Scientific | 08772-E | Plastic TC-treated dishes |
6-well Tissue Culture Dishes | Thomas Scientific | 1194Y80 | NEST plates |
Mouse Laminin | Life Technologies | 23017-015 | Add 1:400 on plastic |
Poly-Ornithine | Sigma | P3655-10mg | Add 1:1000 on plastic |
UltraPure Distilled Water | Life Technologies | 10977-015 | To dilute Poly-L-Ornithine |
Replating Reagents | |||
100mM Cell Strainer | Corning | 431752 | Sterile, individually wrapped |
384-well plate, uncoated | PerkinElmer | 6007550 | Coat with PLO and Laminin |
DPBS | Life Technologies | 14190144 | Dulbecco's phosphate-buffered saline |
Poly-D-Lysine-Precoated 384-well Plates | PerkinElmer | 6057500 | Rinse before coating with laminin |
StemPro Accutase | Life Technologies | A1110501 | Apply 1mL/10cm plate for 30-45 minutes; proteolytic enzyme |
Fixation Materials | |||
37% Formaldehyde | Fisher Scientific | F79-1 | Dissolved in PBS |
Sucrose | Fisher Scientific | S5-12 | 0.8 g per 10 ml of fixative |
Immunostaining Materials | |||
Alexa Fluor 488 Goat anti-mouse | Invitrogen | A-11001 | secondary antibody |
Alexa Fluor 568 Goat anti-chicken | Invitrogen | A-11041 | secondary antibody |
Alexa Fluor 647 Goat anti-chicken | Invitrogen | A-21449 | secondary antibody |
Alexa Fluor 561 Goat anti-rat | Invitrogen | A-11077 | secondary antibody |
DAPI | Biotium | 40043 | visualizes DNA |
mouse antibody against b3-tubulin (TuJ-1) | Neuromics | MO15013 | early stage neuronal marker |
rat antibody against CTIP2 | Abcam | ab18465 | layer 5/6 cortical neurons |
chicken antibody against MAP2 | LifeSpan Biosciences | LS-B290 | early stage neuronal marker |
chicken antibody against NeuN | Millipore | ABN91 | late stage neuronal marker |
rabbit antibody against MAP2 | Shelley Halpain | N/A | early stage neuronal marker |
mouse antibody against PSD-95 | Sigma | P-246 | post-synaptic marker |
rabbit antibody against Synapsin 1 | Millipore | AB1543 | pre-synaptic marker |
Bovine serum albumin (BSA) | GE Healthcare Life Sciences | SH30574.02 | 10% in PBS for blocking |
Titon X-100 | Sigma | 9002931 | Dilute to 0.2% on PBS for permeabilization |
Viability Markers | |||
Vivafix 649/660 | Biorad | 135-1118 | cell death marker |
Calcium Imaging | |||
Name of Reagent/ Equipment | Company | Catalog Number | Comments/Description |
AAV8-syn-jGCAMP7f-WPRE | THE SALK INSTITUTE, GT3 Core Facility | N/A | calcium reporter in a viral delivery system |
hiPSC-derived NPCs | |||
WT 126 (Y2610) | Gage lab | N/A | Marchetto et al., 2010 |
CVB WT24 | Yeo and Goldstein labs | N/A | unpublished |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved