A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Acute Wallenberg's syndrome can be misdiagnosed as a non-stroke disease, such as auditory vertigo. Thus, careful neurological examination, which is sometimes difficult for non-neurologists, is necessary for precise diagnosis. Here, we present a simple, rapid, noninvasive, and cost-effective method for detection of acute Wallenberg's syndrome using portable thermography.
Wallenberg's syndrome (WS) is a type of brainstem infarction. WS patients often show Horner's syndrome, dissociated sensory disturbance, truncal ataxia, and hoarseness. However, they rarely show tactile sensory disturbance and paralysis of the extremities. Additionally, acute brainstem infarction is often not apparent in magnetic resonance images. These symptomatic and imaging characteristics sometimes lead to misdiagnosis of WS as a non-stroke disease, including auditory vertigo. Although careful neurological examination is necessary to prevent misdiagnosis of WS, this type of examination may be difficult for non-neurologists to whom affected patients initially present. Lateral differences in body surface temperature (BST) constitute a recognized and widespread symptom of WS. We previously reported that most acute WS patients exhibit lateral differences in BST at multiple locations and that these lateral differences in BST could easily be detected by thermographic measurement. Here, we present the method for use of portable thermography to detect acute WS, using a simple, rapid, noninvasive, and cost-effective approach. To assess lateral differences in BST among patients with suspected WS, BST was measured as soon as possible in the examination room or in the patient's bedroom. Measurements were performed bilaterally at four locations where images could easily be acquired (face, palm of the hand, abdomen, and dorsum of the foot) using a portable thermal camera. When lateral differences in BST are observed macroscopically, especially in multiple locations on the same side, a diagnosis of WS should be suspected. Macroscopic assessment of BST laterality can be made within 2 min of the acquisition of thermographic images. This method may be useful in preventing misdiagnosis of acute WS as a non-stroke disease, especially when such patients initially present to non-neurologists.
Wallenberg's syndrome (WS) is a type of brainstem infarction. Acute WS patients are sometimes initially misdiagnosed with non-stroke diseases because of the symptomatic and magnetic resonance imaging (MRI) characteristics of WS. To accurately diagnose acute WS, careful neurological examination is necessary, which may be difficult for non-neurologists to whom affected patients initially present. Here, we present a simple, rapid, noninvasive, and cost-effective method for the detection of acute WS using portable thermography.
WS is caused by the infarction of a wedge of the dorsal lateral medulla oblongata, due to occlusion of the vertebral artery or posterior inferior cerebellar artery1,2. WS may be misdiagnosed as a non-stroke disease because of a combination of unique symptomatic and MRI characteristics that contrast with those typically observed in cerebral infarction. Hemiparesis and tactile sensory disturbance, which tend to be observed in patients with other types of cerebral infarction, are rare in WS patients; however, they exhibit various combinations of clinical symptoms, including hoarseness and dysphagia, dissociated sensory disturbance, vertigo, gaze-induced nystagmus, ataxia, and Horner's syndrome1,2,3,4,5,6,7,. Another unique characteristic of WS patients is the limited severity of symptoms, which is similar to that in other types of brainstem infarctions7,8,9,10,11. Some patients with brainstem infarctions have arrived at the outpatient clinic on foot and reported only minor complaints7. In some patients with WS, vertigo is the only presenting symptom, and it can therefore be difficult to differentiate between WS and auditory vertigo12. Furthermore, WS can affect young patients, due to its potential etiology of artery dissection2. MRI analysis of brainstem infarction, including WS, is unique in that the high-intensity diffusion-weighted imaging signal may be delayed in some patients7,13,14.
The above characteristics are thought to cause misdiagnosis of WS. Dysphagia may cause aspiration pneumonia or asphyxia, and artery dissection may cause subarachnoid hemorrhage15; therefore, overlooking WS may result in the development of life-threatening conditions for the patient. Although careful neurological examination is necessary to prevent the misdiagnosis of WS, it is likely that a patient will first present to a non-neurologist. Therefore, a rapid and simple method for screening of acute WS may be clinically useful.
Previously, we reported that 89% of acute WS patients exhibit laterality of BST, which is presumed to result from disturbance of the central autonomic nervous tract due to infarction at the lateral medulla7. Because this autonomic nervous tract descends from the lateral brainstem (including the ventro-lateral medulla) and contains the connective pathway of sweating and skin blood flow16, disturbance of sweating and vasoconstriction lead to increased BST on the ipsilateral side of WS. In the prior report, we also showed that the laterality of BST can be easily detected within 2 min using thermographic measurement in most patients with WS7,17. Here, we report a method for the detection of laterality of BST using thermography, which may be useful in preventing misdiagnosis of acute WS.
All methods described here were approved by the Human Research Ethics Committee Institutional Review Board of Kanto Central Hospital.
NOTE: We used a commercially available portable thermal camera and dedicated software (see the Table of Materials), and have constructed our protocols based on the use of these specific instruments.
1. Preparation for Measurements
2. Patient Selection
3. Acquisition of Thermographic Images
4. Assessing the Laterality of BST
5. Advanced Assessment of the Laterality of BST
6. Confirming WS
Acquisition of thermographic images and macroscopic assessment to determine whether BST exhibits laterality may be performed within 2 min in most patients. Most acute WS patients exhibit laterality of BST at multiple locations. Some patients exhibit laterality of BST throughout the body (Figure 2A), whereas some exhibit laterality only in a few locations (Figure 2B). The warmer side, as determine...
Critical steps of this protocol are the establishment the initial suspicion of WS and the decision to acquire thermographic images of the patient. Acquiring thermographic images and assessing the laterality of BST is a simple approach, even for non-neurologists who may examine patients upon initial presentation to the emergency department or a general clinic. If a patient exhibits laterality of BST, especially at multiple locations on the same side, the physician should consider the possibility of WS. Because most WS pat...
This work was supported in part by Ministry of Health, Labour and Welfare, Japan (UMIN000009958).
Not applicable
Name | Company | Catalog Number | Comments |
FLIR E5 | FLIR Systems | P/N: 63905-0501 | |
FLIR Tools | FLIR Systems | RRID:SCR_016330 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved