A subscription to JoVE is required to view this content. Sign in or start your free trial.
This study presents an alternative strategy to the conventional toxic analog-based method in identifying amino acid overproducers by using rare-codon-rich markers to achieve accuracy, sensitivity, and high-throughput simultaneously.
To satisfy the ever-growing market for amino acids, high-performance production strains are needed. The amino acid overproducers are conventionally identified by harnessing the competitions between amino acids and their analogs. However, this analog-based method is of low accuracy, and proper analogs for specific amino acids are limited. Here, we present an alternative strategy that enables an accurate, sensitive, and high-throughput screening of amino acid overproducers using rare-codon-rich markers. This strategy is inspired by the phenomenon of codon usage bias in protein translation, for which codons are categorized into common or rare ones based on their frequencies of occurrence in the coding DNA. The translation of rare codons depends on their corresponding rare transfer RNAs (tRNAs), which cannot be fully charged by the cognate amino acids under starvation. Theoretically, the rare tRNAs can be charged if there is a surplus of the amino acids after charging the synonymous common isoacceptors. Therefore, retarded translations caused by rare codons could be restored by feeding or intracellular overproductions of the corresponding amino acids. Under this assumption, a selection or screening system for identifying amino acid overproducers is established by replacing the common codons of the targeted amino acids with their synonymous rare alternatives in the antibiotic resistance genes or the genes encoding fluorescent or chromogenic proteins. We show that the protein expressions can be greatly hindered by the incorporation of rare codons and that the levels of proteins correlate positively with the amino acid concentrations. Using this system, overproducers of multiple amino acids can be readily screened out from mutation libraries. This rare-codon-based strategy only requires a single modified gene, and the host is less likely to escape the selection than in other methods. It offers an alternative approach for obtaining amino acid overproducers.
The current production of amino acids relies heavily on fermentation. However, the titers and yields for most amino acid production strains are below the rising demands of the global amino acid market that is worth billions of dollars1,2. Obtaining high-performance amino acid overproducers are critical for the upgrade of the amino acid industry.
Traditional strategy to identify amino acid overproducers exploits the competitions between amino acids and their analogs in protein synthesis3,4. These analogs are able to charge th....
1. Construction of the plasmids expressing the rare-codon-rich marker genes
For the selection system, a sharp decrease in OD600 for strains harboring the rare-codon-rich antibiotic resistance gene should be observed in comparison to the strain harboring the wild-type antibiotic resistance gene when cultured in a suitable medium (Figure 1a). Under the same conditions, the decrease in cell OD600 becomes more obvious as the number of rare codons in the antibiotic resistance gene increases (Figu.......
The number of rare codons in the marker genes and the selection or screening medium are critical to inhibit protein expressions from the rare-codon-modified marker genes. If no significant difference can be detected between protein expressions from the wild-type marker genes and their derivatives, increasing the number of rare codons or using a nutrient-limited medium may amplify the differences. However, if the inhibition effect is too strong, the protein expressions may not be recovered even by extra feeding of the cor.......
The authors have nothing to disclose.
The work was jointly supported by the National Natural Science Foundation of China (grant no. 21676026), the National Key R&D Program of China (grant no. 2017YFD0201400), and the China Postdoctoral Science Foundation (grant no. 2017M620643). Works in the UCLA Institute of Advancement (Suzhou) were supported by the internal grants from Jiangsu Province and Suzhou Industrial Park.
....Name | Company | Catalog Number | Comments |
Acetonitrile | Thermo | 51101 | |
EasyPure HiPure Plasmid MiniPrep Kit | Transgen | EM111-01 | |
EasyPure Quick Gel Extraction Kit | Transgen | EG101-01 | |
Gibson assembly master mix | NEB | E2611S | |
Isopropyl β-D-1-thiogalactopyranoside | Solarbio | I8070 | |
L-leucine | Sigma | L8000 | |
Microplate reader | Biotek | Synergy 2 | |
n-hexane | Thermo | H3061 | |
Phenyl isothiocyanate | Sigma | P1034 | |
PrancerPurple CPB-37-441 | ATUM | CPB-37-441 | |
TransStar FastPfu Fly DNA polymerase | Transgen | AP231-01 | |
Triethylamine | Sigma | T0886 | |
Ultra-high performance liquid chromatography | Agilent | 1290 Infinity II | |
Wild type C. glutamicum | ATCC | 13032 | |
XL10-Gold E. coli competent cell | Agilent | 200314 | |
ZORBAX RRHD Eclipse Plus C18 column | Agilent | 959759-902K |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved