Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

The goal of this protocol is to genotype the sea anemone Nematostella vectensis during gastrulation without sacrificing the embryo.

Abstract

Described here is a PCR-based protocol to genotype the gastrula stage embryo of the anthozoan cnidarian Nematostella vectensis without sacrificing the life of the animal. Following in vitro fertilization and de-jellying, zygotes are allowed to develop for 24 h at room temperature to reach the early- to mid-gastrula stage. The gastrula embryos are then placed on an agarose gel bed in a Petri dish containing seawater. Under the dissecting microscope, a tungsten needle is used to surgically separate an aboral tissue fragment from each embryo. Post-surgery embryos are then allowed to heal and continue development. Genomic DNA is extracted from the isolated tissue fragment and used as a template for locus-specific PCR. The genotype can be determined based on the size of PCR products or presence/absence of allele-specific PCR products. Post-surgery embryos are then sorted according to the genotype. The duration of the entire genotyping process depends on the number of embryos to be screened, but it minimally requires 4–5 h. This method can be used to identify knockout mutants from a genetically heterogeneous population of embryos and enables analyses of phenotypes during development.

Introduction

Cnidarians represent a diverse group of animals that include jellyfish, corals, and sea anemones. They are diploblasts, composed of ectoderm and endoderm that are separated by an extracellular matrix (mesoglea). Cnidaria is a sister group to speciose Bilateria, to which traditional animal models such as Drosophila and Mus belong1. Additionally, the Cnidaria-Bilateria divergence is thought to have occurred in the pre-Cambrian period2. As such, comparative studies of cnidarians and bilaterians are essential for gaining insights into the biology of their most recent common ancestor. Recently, comparative g....

Protocol

1. Induction of spawning, in vitro fertilization, and de-jellying

  1. Maintain Nematostella vectensis in seawater with a salinity of 12 parts per thousand (ppt) in darkness at 16 °C, feeding Artemia daily.
  2. On the day before spawning induction, place animals in a temperature- and light-controlled incubator. Program the incubator so that the animals are exposed to 8 h of light at 25 °C. Optional: Feed a small piece (<1 mm3) of oyster to individual animal.......

Representative Results

The Nematostella genome has a single locus that encodes a precursor protein for the neuropeptide GLWamide. Three knockout mutant alleles at this locus (glw-a, glw-b, and glw-c) have been previously reported5. Four heterozygous males carrying a wild-type allele (+) and knockout allele glw-c at the GLWamide locus (genotype: +/glw-c) were crossed with a heterozygous fem.......

Discussion

Described here a PCR-based protocol to genotype a single sea anemone embryo without sacrificing the animal. Following spawning and de-jellying, the fertilized eggs are allowed to develop into gastrulae. The aboral region of each gastrula embryo is surgically removed, and the isolated aboral tissue is used for subsequent genomic DNA extraction, while the remaining post-surgery embryos heal and continue development. The gDNA extracts are then used for a PCR assay to determine the genotype of each embryo. This method takes .......

Acknowledgements

We thank anonymous reviewers for comments on the earlier version of the manuscript, which improved the manuscript. This work was supported by funds from the University of Arkansas.

....

Materials

NameCompanyCatalog NumberComments
Drosophila Peltier Refrigerated IncubatorShellabSRI6PFUsed for spawning induction
Instant ocean sea saltInstant ocean138510
Brine shrimp cystsAquatic Eco-Systems, Inc.BS90
L-Cysteine HydrochlorideSigma AldrichC7352
Standard Orbital Shaker, Model 3500VWR89032-092
TRIS-HCl, 1M, pH8.0QUALITY BIOLOGICAL351-007-01
Potassium chlorideVWRBDH9258
EDTA, 0.5M pH8VWRBDH7830-1
Tween 20Sigma AldrichP9416
Nonidet-P40 SubstituteUS BiologicalN3500
Proteinase K solution (20 mg/mL), RNA gradeThermoFisher25530049
AgaroseVWR710
Micro Dissecting needle holderRobozRS-6060
Tungsten dissecting needleRobozRS-6063
PCR Eppendorf Mastercycler Thermal CyclersEppendorfE6336000024
Phusion High-Fidelity DNA polymeraseNew England BioLabsM0530L
dNTP mixNew England BioLabsN0447L
GLWamide universal forward primer5’- CATGCGGAGACCAAGCGCAAGGC-3’
Reverse primer specific to glw-a5’-CCAGATGCCTGGTGATAC-3’
Reverse primer specific to glw-c 5’- CGGCCGGCGCATATATAG-3’

References

  1. Medina, M., Collins, A. G., Silberman, J. D., Sogin, M. L. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proceedings of the National Academy of Sciences of the United States of America. 98 (17), 9707-9712 (2001).
  2. Erwin, D. H., et al.

Explore More Articles

GenotypingSea AnemoneEarly DevelopmentMutantEmbryogenesisPhenotypeNematostella VectensisSpawningFertilizationDejellyDNA ExtractionAgarose GelMicrosurgery

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved