Sign In

A subscription to JoVE is required to view this content. Sign in or start your free trial.

In This Article

  • Summary
  • Abstract
  • Introduction
  • Protocol
  • Representative Results
  • Discussion
  • Acknowledgements
  • Materials
  • References
  • Reprints and Permissions

Summary

We present a protocol and a feasibility study for applying transcranial direct current stimulation (tDCS) and neuroimaging assessment in online gamers.

Abstract

Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that applies a weak electric current to the scalp to modulate neuronal membrane potentials. Compared to other brain stimulation methods, tDCS is relatively safe, simple, and inexpensive to administer.

Since excessive online gaming can negatively affect mental health and daily functioning, developing treatment options for gamers is necessary. Although tDCS over the dorsolateral prefrontal cortex (DLPFC) has demonstrated promising results for various addictions, it has not been tested in gamers. This paper describes a protocol and a feasibility study for applying repeated tDCS over the DLPFC and neuroimaging to examine the underlying neural correlates in gamers.

At baseline, individuals who play online games report average weekly hours spent on games, complete questionnaires on addiction symptoms and self-control, and undergo brain 18F-fluoro-2-deoxyglucose positron emission tomography (FDG-PET). The tDCS protocol consists of 12 sessions over the DLPFC for 4 weeks (anode F3/cathode F4, 2 mA for 30 min per session). Then, a follow-up is conducted using the same protocol as the baseline. Individuals who do not play online games receive only baseline FDG-PET scans without tDCS. Changes of clinical characteristics and asymmetry of regional cerebral metabolic rate of glucose (rCMRglu) in the DLPFC are examined in gamers. In addition, asymmetry of rCMRglu is compared between gamers and non-gamers at baseline.

In our experiment, 15 gamers received tDCS sessions and completed baseline and follow-up scans. Ten non-gamers underwent FDG-PET scans at the baseline. The tDCS reduced addiction symptoms, time spent on games, and increased self-control. Moreover, abnormal asymmetry of rCMRglu in the DLPFC at baseline was alleviated after tDCS.

The current protocol may be useful for assessing treatment efficacy of tDCS and its underlying brain changes in gamers. Further randomized sham-controlled studies are warranted. Moreover, the protocol can be applied to other neurological and psychiatric disorders.

Introduction

In recent years, increasing attention has been paid to excessive online game use since its associations with negative impact on mental health and daily functioning as well as with internet gaming disorder (IGD) have been reported1,2,3. Although several treatment strategies including pharmacotherapy and cognitive-behavioral therapy have been evaluated, evidence for their effectiveness is limited4.

Previous studies have suggested that IGD may share clinical and neurobiological similarities with other behavioral addictions and ....

Protocol

All experimental procedures presented in this protocol have been approved by the Institutional Review Board and are in accordance with the Declaration of Helsinki.

1. Research Participants

  1. Recruit individuals who report that they play online games (the gamer group) and those who report that they do not play online games (the non-gamer group).
    NOTE: Here, we included individuals with two or more IGD symptoms according to the Diagnostic and Statistical Manual .......

Representative Results

A total of 15 gamers (Table 1) and 10 non-gamers were recruited. The mean age of the gamer group (21.3 ± 1.4) was significantly lower than that of the non-gamer group (28.8 ± 7.5) (t = -3.81, p < 0.001). There were 8 men in the gamer group and 6 men in the non-gamer group (χ2 = 0.11, p = 0.74).

Behavioral results using linear mixed models indicate that the tDCS sessions successfully lowered the IAT score (z = -4.29, p < 0.001), weekly hours sp.......

Discussion

We have presented a tDCS and neuroimaging protocol for online gamers and assessed its feasibility. The results demonstrated that repeated sessions of tDCS over the DLPFC reduced online game addiction symptoms and average time spent on games and increased self-control. An increase in self-control was correlated with a decrease in addiction symptoms. Moreover, the abnormal asymmetry of rCMRglu in the DLPFC where the right side was greater than the left side was improved after the tDCS sessions in the gamer group. These res.......

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2015M3C7A1064832, 2015M3C7A1028373, 2018M3A6A3058651) and by the National Institutes of Health (NIHNIMH 1R01MH111896, NIH-NINDS 1R01NS101362).

....

Materials

NameCompanyCatalog NumberComments
Discovery STE PET/CT Imaging SystemGE Healthcare
MarsBaR region of interest toolbox for SPMMatthew BrettNeuroimaging analysis software; http://marsbar.sourceforge.net/
Statistical Parametric Mapping 12Wellcome Centre for Human NeuroimagingNeuroimaging analysis software; https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
Transcranial direct current stimulation deviceYbrainYDS-301N
WFU_PickAtlasANSIR Laboratory, Wake Forest University School of MedicineNeuroimaging analysis software; https://www.nitrc.org/projects/wfu_pickatlas/

References

Explore More Articles

TDCSTranscranial Direct Current StimulationOnline GamingBrain ModulationNeuroimagingFDG PET ScanDorsolateral Prefrontal CortexInternet Addiction TestBrief Self Control Scale

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved