A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we describe a method to induce meningococcal meningitis through an intracisternal route of infection in adult mice. We present a step by step protocol of meningococcal infection from the preparation of inoculum to the intracisternal infection; then record the animal survival and evaluate the bacterial loads in murine tissues.
Neisseria meningitidis (meningococcus) is a narrow-host-range microorganism, globally recognized as the leading cause of bacterial meningitis. Meningococcus is a transient colonizer of human nasopharynx of approximately 10% of healthy subject. In particular circumstances, it acquires an invasive ability to penetrate the mucosal barrier and invades the bloodstream causing septicaemia. In the latest case, fulminating sepsis could arise even without the consequent development of meningitis. Conversely, bacteria could poorly multiply in the bloodstream, cross the blood brain barrier, reach the central nervous system, leading to fulminant meningitis. The murine models of bacterial meningitis represent a useful tool to investigate the host-pathogen interactions and to analyze the pathogenetic mechanisms responsible for this lethal disease. Although, several experimental model systems have been evaluated over the last decades, none of these were able to reproduce the characteristic pathological events of meningococcal disease. In this experimental protocol, we describe a detailed procedure for the induction of meningococcal meningitis in a mouse model based on the intracisternal inoculation of bacteria. The peculiar signs of human meningitis were recorded in the murine host through the assessment of clinical parameters (e.g., temperature, body weight), evaluation of survival rate, microbiological analysis and histological examination of brain injury. When using intracisternal (i.cist.) inoculum, meningococci complete delivery directly into cisterna magna, leading to a very efficient meningococcal replication in the brain tissue. A 1,000-fold increase of viable count of bacteria is observed in about 18 h. Moreover, meningococci are also found in the spleen, and liver of infected mice, suggesting that the liver may represent a target organ for meningococcal replication.
Neisseria meningitidis is a Gram negative β-proteobacterium restricted to the human host, well known for being one of the most common causes of meningitis and sepsis in the human population across the world. It colonizes the upper respiratory tract (nose and throat) of healthy and asymptomatic carriers (2-30% of the population), but the bacterium sometimes evades various host immune defenses and spreads from the bloodstream to the brain causing an uncontrolled local inflammation, known as meningococcal meningitis. A combination of host and bacterial factors appears to contribute to the transition from the commensal to the invasive behavior
This protocol was conducted to minimize animal suffering and reduce the number of mice in accordance with the European Communities Council Directive of November 24, 1986 (86/609/EEC). In vivo experiments reported in this study were approved by the Ethical Animal Care and Use Committee (Prot. number 2, 14 December 2012) and the Italian Ministry of Health (Prot. number 0000094-A-03/01/2013). All the procedures should be performed inside the Biosafety Cabinet 2 (BSC2) in a BSL2 room, and the potential infected waste should .......
Survival of mice infected with N. meningitidis wild type and isogenic mutant strains.
The Neisseria meningitidis strains used in these representative results are the serogroup C reference strain 93/4286 (ET-37) and its isogenic mutant 93/4286ΩcssA obtained by insertional inactivation of the cssA gene, coding for the UDP-N-acetylglucosamine 2-epimerase, that maps in capsule synthesis locus25. To assess the virulence degree of the c.......
In this study, we describe an experimental protocol to induce meningococcal meningitis in adult mice by i.cist. inoculation of meningococcal bacteria. To our knowledge, no other model of meningococcal meningitis has been developed in laboratory mice infected by i.cist. route; in the past, this way has been explored to provide models of meningococcal meningitis in both rat31 and rabbit32. It is well-known that the highest rate of meningococcal disease is found between young .......
The studies were supported in part by PRIN 2012 [grant number 2012WJSX8K]: “Host-microbe interaction models in mucosal infections: development of novel therapeutic strategies” and by PRIN 2017 [2017SFBFER]: “An integrated approach to tackle the interplay among adaptation, stressful conditions and antimicrobial resistance of challenging pathogens”.
....Name | Company | Catalog Number | Comments |
1,8 Skirted Cryovial With external thread | Starlab | E3090-6222 | |
50ml Polypropylene Conical Tube | Falcon | 352070 | 30 x 115mm |
Adson Forceps | F.S.T. | 11006-12 | Stainless Steel |
Alarm-Thermometer | TESTO | 9000530 | |
BactoTM Proteose Peptone | BD | 211693 | |
BD Micro Fine syringe | BD | 320837 | U-100 Insulin |
BD Plastipak syringe 1ml 25GA 5/8in | BD | 300014 | 05x16mm |
BD Plastipak syringe 5ml | BD | 308062 | 07 x 30mm |
BIOHAZARD AURA B VERTICAL LAMINAR FLOW CABINET | Bio Air s.c.r.l. | Aura B3 | |
BioPhotometer | Eppendorf | Model #6131 | |
Bottle D | Tecniplast | D | Graduated up to:400ml, Total Volume 450ml, 72x72x122mm |
C150 CO2 Incubator | Binder | 9040-0078 | |
Cage Body Eurostandard Type II | Tecniplast | 1264C | 267x207x140mm, Floor area 370cm2 |
Cell Culture Petri Dish With Lid | Thermo Scientific | 150288 | Working Volume: 5mL |
Centrifuge | Eppendorf | Microcentrifuge 5415R | |
Cuvetta semi-micro L. Form | Kartell S.p.A. | 01938-00 | |
di-Potassium hydrogen phosphate trihydrate | Carlo erba | 471767 | |
di-Sodium hydrogen phosphate anhydrous ACS-for analysis | Carlo Erba | 480141 | g1000 |
Diete Standard Certificate | Mucedola s.r.l. | 4RF21 | Food pellet for animal |
Dumont Hp Tweezers 5 Stainless Steel | F.S.T. by DUMONT | AGT5034 | 0,10 x 0,06 mm tip |
Electronic Balance | Gibertini | EU-C1200 | Max 1200g, d=0,01g, T=-1200g |
Eppendorf Microcentrifuge tube safe-lock | Eppendorf | T3545-1000EA | |
Erythromycin | Sigma-Aldrich | E-6376 | 25g |
Extra Fine Bonn Scissors | F.S.T. | 14084-08 | Stainless Steel |
Filter Top (mini- Isolator), H-Temp with lock clamps | Tecniplast | 1264C400SUC | |
GC agar base | OXOID | CM0367 | |
Gillies Forceps 1 x2 teeth | F.S.T. | 11028-15 | Stainless Steel |
Glicerin RPE | Carlo Erba | 453752 | 1L |
Graefe Forceps | F.S.T. | 11052-10 | Serrated Tip Width: 0.8mm |
Inner lid | Tecniplast | 1264C116 | |
Iron dextran solution | Sigma-Aldrich | D8517-25ML | |
Ketamine | Intervet | ||
Microbiological Safety Cabinet BH-EN and BHG Class II | Faster | BH-EN 2004 | |
Microcentrifuge tubes 1.5ml | BRAND | PP780751 | screw cap PP, grad |
Mouse Handling Forceps | F.S.T. | 11035-20 | Serrated rubber; Gripping surface:15 x 20 mm |
Mucotit-F2000 | MERZ | 61846 | 2000ml |
Natural Latex Gloves | Medica | M101 | |
New Brunswick Classic C24 Incubator Shaker | PBI international | C-24 Classic Benchtop Incubator Shaker | |
Petri PS Dishes | VWR | 391-0453 | 90X14.2MM |
Pipetman Classic P20 | Gilson | F123600 | 2-20microL |
Pipetman Classic P200 | Gilson | F123601 | 20-200microL |
Pipetman Classim P1000 | Gilson | F123602 | 200-1000microL |
Polyvitox | OXOID | SR0090A | |
Potassium Chloride | J.T. Baker Chemicals B.V. | 0208 | 250g |
Potassium Dihydrogen Phosphate | J.T. Baker Chemicals B.V. | 0240 | 1Kg |
PS Disposible forceps | VWR | 232-0191 | |
Removable Divider | Tecniplast | 1264C812 | |
Round-Bottom Polypropylene Tubes | Falcon | 352063 | 5ml |
Sodium Chloride | MOLEKULA | 41272436 | |
SS retainer and Polyester FilterSheet | Tecniplast | 1264C | |
Standard Pattern Forceps | F.S.T. | 11000-12 | Stainless |
Stevens Tenotomy Scissors | F.S.T. | 14066-11 | Stainless Steel |
Surgical Scissor - ToughCut | F.S.T. | 14130-17 | Stainless |
Touch N Tuff disposible nitrile gloves | Ansell | 92-500 | |
Ultra Low Temperature (ULT) Freezer | Haier | DW-86L288 | Volume= 288L |
Wagner Scissors | F.S.T. | 14070-12 | Stainless Steel |
Xylazine | Intervet |
This article has been published
Video Coming Soon
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved