A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
A cryogenic pulverization method to process murine paws using a liquid nitrogen freezer mill was developed to improve the yield and quality of RNA or protein extracted from the tissues and enable the analysis of molecular profiles associated with inflammatory responses.
Profiling molecular changes in local tissues is crucial to understand the mechanism(s) of action of therapeutic candidates in vivo. In the field of arthritis research, many studies are focused on inflamed joints that are composed of a complex mixture of bone, cartilage, muscle, stromal cells and immune cells. Here, we established a reliable and robust mechanical method to disrupt inflamed mouse paws into homogeneous pulverized samples in a cryogenically controlled environment. Protein and RNA lysates were processed to enable proteomic and transcriptional endpoints and molecular characterization of relevant disease pathways in local tissue.
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease with persistent symmetric synovitis in joints and extra articular involvement of organs such as the skin, heart, lungs, and eyes1. Although the systemic manifestations of the immune response are evident in human patients, one of the hallmarks of RA pathology is infiltration of immune cells in synovial tissue and proliferation of synovial fibroblast cells2.
Similar to human RA, mouse collagen induced arthritis (CIA) model elicits strong tissue inflammation with active immune responses in synovial tissues and systemic compartments. The susceptibility of different mouse strains to CIA model links to Major Histocompatibility Complex (MHC) haplotype and antigen specific T cell and B cell interactions3,4. In addition, many pathogenic pathways in human RA, including autoantibody production, immune complex deposition, myeloid cell activation, polyarticular manifestations and pannus formation with synovial immune infiltration, are also evident in this model5,6. Investigators have employed this well-established CIA model to investigate effects of anti-inflammatory cytokine treatments7. Many biologics approved for autoimmune or inflammatory diseases, such as anti-TNFα and anti-IL-6, are found to be efficacious in the CIA model8,9.
Profiling the interactions of the immune system in synovial tissue is crucial to elucidate molecular mechanisms associated with the pathogenesis of RA. In the human clinical setting, a common practice is to perform needle synovial biopsies under the guidance of ultrasound imaging. In the preclinical settings, the smaller architecture of the murine joints makes biopsy procedures much more difficult if not impossible. Recently, we demonstrated the utilization of the murine CIA model to evaluate combinations of drugs to impact disparate end-points and resolve disease in a combinatorial approach10. A cryogenic freezer mill-based pulverization method was employed to process inflamed murine paws into homogeneous fine powders and established downstream processes to extract RNA and proteins. This method protects RNA and protein from enzymatic and chemical degrative processes and enables us to apply multiple analytical methods to a single homogenized sample source.
All animal experiments were conducted in accordance within the policies of the Institutional Animal Care and Use Committee (IACUC) of Janssen R&D.
1. Cryogenic Freezer Mill-based Pulverization Method
2. RNA Extraction
3. Protein Extraction
Here, we show a representative gel image visualization of RNA extracted from front paws of CIA mice in Figure 2A. The 28S rRNA and the 18S rRNA band indicate all samples have sufficient amount of intact RNA. Next, we show a representative scatter plot of total protein concentrations based on protein BCA analysis in Figure 2B. Total protein concentrations from naïve mice, CIA mice or CIA mice...
Although there is strong scientific rationale to evaluate molecular pathways in synovial tissues, many reports on immune profiling of murine CIA model were focused on peripheral blood, while protein and RNA analysis data of inflamed paws are rather limited. There are several possible reasons for this bias: murine ankle joints are no larger than ~2 cm; the affected areas consist of skin, bone and connective tissues which are often difficult to homogenize using traditional methods like tissue grinders, pestle and mortar, s...
The authors BJ, SH, ML, RM, ML, TO and FS are employees of Janssen Research & Development Inc and are shareholders in the parent company, Johnson & Johnson, Inc.
The authors wish to thank Edith Janssen for the critical review of the manuscript and Navin Rao and Jennifer Towne for their support of the publication of this manuscript.
Name | Company | Catalog Number | Comments |
5 mm stainless steel bead | Qiagen | 69989 | |
beta-mercaptoethanol | Sigma | M6250 | Sample reducing agent that inhibits RNASE enzymes |
Bioanalyzer Kit | Agilent | 5067-1511 | RNA qualification kit |
b-mercaptoethanol | Sigma | M6250 | |
Cell Culture Grade Water | Corning | 25-055-CI | Water |
Cell lysis stock solution | Cell Signaling | 9803 | |
Eppendorf Tube | Eppendorf | 22363204 | Microfuge tubes |
Eppendorf tube centrifuge box | Nalgene | 5055 | Box for holding eppendorf tubes in horizontal tube arrangement |
Everlast 247 Variable Speed Rocker | Benchmark Scientific | BR5000 | |
Freezer Mill | Spex Sample Prep | 6875 | Freezer/Mill for processing paws into pulverized powder |
Grinding Vial | Spex Sample Prep | 6801 | Polycarbonate vial for processing paws into pulverized powder |
Pierce BCA kit | Pierce | 23225 | Kit for Total Protein Quantification |
Protease Inhibitor Cocktail set 1 | Calbiochem | 539131 | Protease Inhibitors |
Protein BCA Kit | Pierce | 23225 | |
Quantigene Kit | Thermofisher | QP1013 | bDNA analysis Kit |
Refrigerated microcentrifuge | Eppendorf | 5417R | Centrifugation |
RLT Buffer | Qiagen | 79216 | RNA extraction buffer |
RNeasy mini kit | Qiagen | 74104 | including RNeasy column, RLT Buffer and RW1 Buffer |
Shaker | Benchmark Scientific | BR5000 | Rocker/Shaker |
Spatula | VWR | 10806-412 | Spatula for powder transfer |
Stainless Steel Bead | Qiagen | 69989 | Bead for mixing during protein extraction |
Tube Extractor | Spex Sample Prep | 6884 | Extractor for removing the top of grinding vial |
Vortexer | VWR | 10153-838 | Sample mixing |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved