A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
Presented here is a protocol to achieve higher accuracy in determination of stimulation location combining a 3D digitizer with high-definition transcranial direct current stimulation.
The abundance of neuroimaging data and rapid development of machine learning has made it possible to investigate brain activation patterns. However, causal evidence of brain area activation leading to a behavior is often left missing. Transcranial direct current stimulation (tDCS), which can temporarily alter brain cortical excitability and activity, is a noninvasive neurophysiological tool used to study causal relationships in the human brain. High-definition transcranial direct current stimulation (HD-tDCS) is a noninvasive brain stimulation (NIBS) technique that produces a more focal current compared to conventional tDCS. Traditionally, the stimulation location has been roughly determined through the 10-20 EEG system, because determining precise stimulation points can be difficult. This protocol uses a 3D digitizer with HD-tDCS to increase accuracy in determination of stimulation points. The method is demonstrated using a 3D digitizer for more accurate localization of stimulation points in the right temporo-parietal junction (rTPJ).
Transcranial direct current stimulation (tDCS) is a noninvasive technique that modulates cortical excitability with weak direct currents over the scalp. It aims to establish causality between neural excitability and behavior in healthy humans1,2,3. In addition, as a motor neurorehabilitation tool, tDCS is widely used in the treatment of Parkinson's disease, stroke, and cerebral palsy4. Existing evidence suggests that traditional pad-based tDCS produces current flow through a relatively larger brain region5,6,7. High-definition transcranial direct current stimulation (HD-tDCS), with the center ring electrode sitting over a target cortical region surrounded by four return electrodes8,9, increases focality by circumscribing four ring areas5,10. In addition, changes in excitability of the brain induced by HD-tDCS have significantly larger magnitudes and longer durations than those generated by traditional tDCS7,11. Therefore, HD-tDCS is widely used in research7,11.
Noninvasive brain stimulation (NIBS) requires specialized methods to ensure that a stimulation site is present in the standard MNI and Talairach systems12. Neuronavigation is a technique that allows for mapping interactions between transcranial stimuli and the human brain. Its visualization and 3D image data are used for precise stimulation. In both tDCS and HD-tDCS, a common assessment of stimulation sites on the scalp is typically the EEG 10-20 system13,14. This measurement is widely used for placing the tDCS pads and optode holders for functional near infrared spectroscopy (fNIRS) in the initial stage13,14,15.
Determining the precise stimulation points when using the 10-20 system can be difficult (e.g., in the temporo-parietal junction [TPJ]). The best way to solve this is to obtain structural images from participants using magnetic resonance imaging (MRI), then obtain the exact probe position by matching target points to their structural images using digitizing products15. MRI provides good spatial resolution but is expensive to use15,16,17. Moreover, some participants (e.g., those with metal implants, claustrophobic people, pregnant women, etc.) cannot be subjected to MRI scanners. Therefore, there is a strong need for a convenient and efficient way to overcome the abovementioned limitations and increase accuracy in determining stimulation points.
This protocol uses a 3D digitizer to overcome these limitations. Compared to MRI, key advantages of a 3D digitizer are low costs, simple application, and portability. It combines five reference points (i.e., Cz, Fpz, Oz, left preauricular point, and right preauricular point) of individuals with location information of the target stimulation points. Then, it produces a 3D position of electrodes on the subject's head and estimates their cortical positions by fitting with the vast data from the structural image12,15. This probabilistic registration method enables the presentation of transcranial mapping data in the MNI coordinate system without recording a subject's magnetic resonance images. The approach generates anatomical automatic labels and Brodmann areas11.
The 3D digitizer, used to mark space coordinates based on the data from structural images, was first used to determine the position of optodes in fNIRS research18. For those who use HD-tDCS, a 3D digitizer breaks the finite stimulation points of the EEG 10-20 system. The distance of the four return electrodes and center electrode is flexible and can be adjusted as needed. When using the 3D digitizer with this protocol, the coordinates of the rTPJ were obtained, which is beyond the 10-20 system. Also shown are the procedures for targeting and stimulating the right temporo-parietal junction (rTPJ) of the human brain.
The protocol meets the guidelines of the Institutional Review Board of Southwest University.
1. Determination of Stimulation Location
2. Preparation of Electrode Holding Cap
NOTE: The following steps are shown in Figure 1.
3. 3D Digitizer Measurement
4. Data Conversion and Spatial Registration
5. Stimulation
6. Post-stimulation
Using the methods presented, coordinates of the rTPJ were determined, which requires stimulation points beyond the 10-20 system. First, the circumference of the headform should be similar to the actual head. Here, the length of the nasion to inion of the headform was ~36 cm, and the length between the bilateral preauricular was ~37 cm.
The steps for producing the electrode cap guide the measuring positions of the 10-20 system. Here, Nz, Iz, Cz, Fpz, Oz, Pz, T8, T7, C4, P8, O2, P4, C6, P6, and ...
Compared to traditional tDCS, HD-tDCS increases the focality of stimulation. Typical sites of stimulation are often based on the 10-20 EEG system. However, determining the precise stimulation points beyond this system can be difficult. This paper combines a 3D digitizer with HD-tDCS to determine stimulation points beyond the 10-20 system. It is important to clearly define the steps and precautions for making and using the electrode cap in such cases.
In general, the position of target stimulat...
The authors have nothing to disclose.
This study was supported by the National Natural Science Foundation of China (31972906), Entrepreneurship and Innovation Program for Chongqing Overseas Returned Scholars (cx2017049), Fundamental Research Funds for Central Universities (SWU1809003), Open Research Fund of the Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences (KLMH2019K05), Research Innovation Projects of Graduate Student in Chongqing (CYS19117), and the Research Program Funds of the Collaborative Innovation Center of Assessment toward Basic Education Quality at Beijing Normal University (2016-06-014-BZK01, SCSM-2016A2-15003, and JCXQ-C-LA-1). We would like to thank Prof. Ofir Turel for his suggestions on the early draft of this manuscript.
Name | Company | Catalog Number | Comments |
1X1 Low Intensity transcranial DC Stimulator | Soterix Medical | 1300A | |
3-dimensional Polhemus-Patriot Digitizer | POLHEMUS | 1A0453-001 | PATRIOT system component |
4X1 Multi-Channel Stimulation Interface | Soterix Medical | 4X1-C3 | |
Dell desktop computer | Dell | CRFC4J2 | Master computer to run 3D digitizer application |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved