Method Article
脑电图方法用于提取脑功能障碍的生物标志物。重点是在 CUed GO/NOGO 任务中记录的多通道事件相关电位 (ERP)。非脑伪影得到纠正,ERP与规范数据进行比较。示例涉及多动症诊断和药物反应预测的生物标志物。
神经精神病学诊断,如多动症是基于主观的方法,如采访,评级尺度和观察。需要更多的基于大脑的补充剂。兴奋剂药物是多动症最常见的治疗方法。临床上有用的反应预测器迄今尚未报告。本文的目的是描述我们应用的基于脑电图的方法,以提取脑功能障碍的潜在生物标志物。示例涉及小儿多动症的生物标志物和药物响应预测。主要重点是事件相关潜力 (ERP)。
在 3 分钟睁开眼睛的任务、3 分钟闭眼任务和 20 分钟视觉 GO/NOGO 任务 (VCPT) 期间,将记录 19 个通道 EEG。在此任务期间记录 ERP。ERP协议的目标是提取假定的大脑功能障碍的生物标志物,从而显著区分患者群体和健康对照组。该协议包括在标准条件和工件校正期间进行记录。ERP 波可用于或转换为潜在组件。患者组的组与对照组进行比较,使情感成分在比较时显示相对较高的效果大小。根据组件空间中的聚类分析选择患者的子组。可以应用治疗程序(如药物、tDCS 或神经反馈协议),并观察与子组治疗相关的组位变化,为临床建议奠定基础。
所述方法应用于对87名小儿多动症患者的研究。药物反应指数在反应者和非应答者之间差异很大,具有较大且临床上有意义的效果大小(d = 1.84)。在一项正在进行的研究中,将多动症儿童与匹配对照进行比较,有几个变量在患者和对照组之间存在显著差异。全局索引将超过d = .8。这里描述的基于脑电图的方法在临床上可能有意义。
2008年,由NIMH发起的研究领域标准(RDoC)项目1出版,旨在找到一个生物学上有效的理解精神障碍的框架。2013 年,美国食品和药物管理局 (FDA) 批准了首个基于 EEG 的多动症生物标志物,以帮助评估 6 至 17 岁患者的多动症。神经精神病学脑电图评估辅助系统(NEBA)记录脑电图15-20分钟。它基于计算在多动症儿童和青少年中比一般发育中的儿童2高的ta/beta比率。最近的出版物发现,这个比率没有捕获所有多动症3。
临床神经科学的大量出版物表明,认知控制受损是许多精神疾病的常见特征,包括多动症、精神分裂症、抑郁症和OCD44,5。5从理论上讲,认知控制包括假设的操作,使人们能够灵活地适应目标和背景。两种不同类型的认知控制,主动和反应控制,被描述6。我们主要关注认知控制的被动模式。主动认知控制包括工作记忆(即保持感官和运动事件几秒钟)。反应性认知控制包括监测、检测冲突77、88和行动抑制(见评论见9,9、10)。
GO/NOGO范式对认知控制11、12、13、14、15很敏感。11,12,13,14,15GO刺激从大脑区域引起正波动。(P3 GO)。由NOGO刺激引起的前分布正N2和P3 NOGO波与检测冲突和行动抑制16、17、18、19,18,相关16,。19N2波已被理解为抑制行动的指标,但最新研究表明,N2波与频繁的GO刺激和冲突检测20有关。行动抑制与前中央站点的 P3 NOGO 波有关。
N2/P3 二分法可能不正确。有人质疑,ERP波,尤其是那些代表认知控制,是几个来源的总和,可能重叠的位置和时间14,21。14,
为了,解开ERP波的源,使用了15、22、23、24,22,23的盲源分离方法。24在圣彼得堡人脑研究所的研究中,N2d NOGO波已经分解。检测到隐藏组件。这些组件具有不同的地形和功能意义。其中只有一人与14、15、25、26,15,25,26号冲突的侦破有关。在大多数成人多动症研究中,P3 NOGO与匹配,的健康对照组27、28、29、30、31、32,28,29相比较小。30,31,32
当GO/NOGO范式中的ERPs被分析14,15,15时,在认知控制任务期间进行的大脑操作似乎没有正确解释N2/P3二分法。已经使用了几种旨在从ERP波中分离隐藏组件的方法(关于审查,见21)。一些研究对患者群体(如精神分裂症患者29岁)和多动症33岁、34岁的成年人(AICA)使用独立成分分析(ICA),试图在没有诊断的情况下将患者从对照中区分出来。
在(Yeredor,2010年,第25页.75),建议并调整一种新方法,用于ERP。它是一种基于交叉方差矩阵联合对角化过程的盲源分离方法。为了研究在古格/NOGO范式中应用这种方法的这种潜在成分的功能意义,人类大脑研究所的一项研究最近于26日实施。在这项研究中,通过修改cued GO/NOGO任务,独立地操纵了行动抑制操作和冲突检测操作。发现了一个隐藏组件,被认为反映了对冲突的检测。N2样的响应和前地形是该成分35的特征。在需要抑制准备动作的试验中,可以看到中央地形和P3样的反应。
在本出版物中,报告的研究使用了传统的ERP方法。应用ICA,或交叉方差矩阵25(第75页)的联合对角化程序迄今尚未完成。一般来说,基于不同方法的结果彼此一致,但发现潜在成分的方法似乎更纯粹地与独特的神经心理功能相关。本文旨在对WinEEG方法进行详细的描述。重点是ERP,但GO/NOGO任务中的脑电图谱和行为数据也包含在为说明WinEEG方法而描述的研究中。
协议中描述的设备经医院当局道德批准,用于临床目的。区域医学研究伦理委员会核准了上述项目。
1. 用于电子数据器记录的硬件和软件
2. 能力和教育
3. 通知患者/参与者
4. 创建脑电图数据文件
注: WinEEG 分别拥有自己的内置数据库,用于存储原始 EEG 文件(扩展 - .eeg)、EEG 光谱(扩展 - .spec) 和 ERP 文件(扩展 - .erp)。数据库自动创建,最初存储在 WinEEG/数据、WinEEG/spec 和 WinEEG/erp 文件夹中。
5. 设备的准备
6. 登记"闭眼"和"睁大眼睛"
7. 准备在古/诺格任务中进行脑电图记录
图1:VCPT:视觉连续性能测试。图 1显示了 VCPT 的四个条件。随机呈现一百个每种条件的试验。总测试时间是20分钟,请点击这里查看这个数字的较大版本。
8. 工作电图和按钮按录音在任务状态
9. 终止注册
10. 清洁
11. 预处理脑电图记录
注:HBIdb 软件中提供了三种不同的电极蒙太奇。它们是:链接耳参考(标记为参考)、通用平均引用(标记为 Av)和本地平均引用(标记为 Aw)。在设置菜单中从蒙太奇列表中选择蒙太奇。EEG 在开始工件校正之前,在参考文献中记录到"更改为 Av"。
12. 计算脑电图光谱
图2:计算EEG光谱。要计算光谱:单击分析 |光谱.如果设置正确,将显示图 2中显示的图片。请点击此处查看此图形的较大版本。
图3:带19个电极的EEG光谱。图 3显示了 19 个站点中的 EEG 光谱。x 轴的频率为 0-30 Hz。y 轴的功率为 μV2。请点击此处查看此图形的较大版本。
13. 计算事件相关潜力
注: 事件相关电位 (ERP) 由平均过程计算。只包括正确的试验。ERP 是在完成上述预处理后计算的。计算 ERP 的黄金标准是使平均试验次数保持在 50 以上。
图4:ERP计算的参数。图 4显示了 19 个站点中的 ERP 组件 a-A GO(绿色)和 a-p NOGO(红色)。时间间隔是 1400 毫秒到 2100 毫秒 A-a GO 在站点 Pz 和 A-p NOGO 在 Cz 上最清晰地看到。请点击此处查看此图形的较大版本。
14. VCPT行为数据的登记和比较
15. 将事件相关潜力与参考数据库进行比较
注: 通过键入菜单中的相应数字:时间间隔(ms)、持续时间(ms)来定义用于比较的兴趣时间间隔。通过从 ERP 窗口顶部的菜单"活动"组中选择相应的图形,可以有选择地针对某些类别的试验(例如 a-GO、a-p NOGO、p-p、p-h)提供 ERP。
小儿多动症药物反应预测
多动症是一种常见的神经精神病儿童疾病36。它的特点是注意力不集中的症状,伴随着多动和冲动的症状。学校、家庭和休闲环境中的损伤很常见。在学龄儿童中,估计患病率为5%至7%。合并是常见的。广泛使用使用基于甲基苯甲酸酯(MPH)或脱氧乙烷(DEX)的兴奋剂的医学。70%的患者报告了兴奋剂药物的积极影响(减少烦躁、多动和冲动以及改善注意力)。从基于MPH的药物转移到DEX可以增加积极的影响到80%37,38。37,38前纹状体电路似乎被兴奋剂39激活。
对于临床上有意义的药物反应,没有普遍接受的定义。应用评分尺度,比较基线分数与药物评分,是最常用的方法。在一些研究中,分数减少 25% 或 50% 用作响应的定义。在其他研究中,分数不超过人口平均值1 SD,使用40,41。40,临床上,使用基于所有相关可用数据的总体决策。评估副作用,如食欲不振,失眠,易怒增加,或焦虑,是重要的37,42。37,
评级表的使用可能出于以下几个原因而受到批评。教师和家长分数之间的小相关性(0.30-0.50)在几项研究48中报告。寻找临床上有用的反应预测因素的动机是大量非应答者、不同意的线人,以及当使用小剂量兴奋剂时,每个人都可以有一些适度的改善注意力效果。已发表的反应预测变量研究包括多动症亚型、人口统计学、共变障碍、基因变量、评分尺度分数、神经心理学测试结果以及脑电图/ERP变量43、44、45、46。43,44,45,46我们的 2016 年出版物47总结了应用 ERP 预测药物反应的研究。
在以前的研究中,我们分析来自穴位视觉GO/NOGO任务的数据(即注意力测试数据、EEG光谱和ERP)。在一项研究中,我们发现3个变量对副作用的预测有显著贡献。这些变量被合并到一个被认为临床有意义的指数42。在一项有关临床效果的研究中,应用相同的方法,预测指数也被认为临床上有用48。第三项研究47中调查了一剂兴奋剂药物对药物反应者(REs)和非应答者(非REs)的影响。测试程序完成两次,第一次测试没有药物,第二次测试在接受试验剂量后一小时。根据评分表和4周药物试验后的采访,患者被归类为R或非R。我们的重点是认知ERP和注意力测试分数的变化。我们发现,两组对P3 NOGO组件的影响明显不同,效果大(d = 1.76)。在R中,组件振幅显著增加,但在非R中则没有。 与仅基于测试1的预测相比,基于两个测试的响应预测得到了改进。
在最新的研究中,我们开发了两个全球指数,一个用于预测临床收益,另一个用于预测副作用。如上所述,我们组合了在具有中等或较大效果大小的比较组之间显著区分的变量。每个变量都根据效果大小进行加权。我们检查了所有三个 WinEEG 域的变量:EEG 光谱、ERP 和行为。组合了以下变量:测试1:P3NOGO振幅和ta/alpha比;测试 2 和测试 1 之间的差异:遗漏误差、反应时间变异性、或有负变化 (CNV) 和 P3NOGO 振幅。全局规模的影响大小为d = 1.86。精度为 0.92。副作用的预测基于 4 个变量:测试 1:RT,测试 2:新奇成分、alpha 峰值频率和反应时间变化(测试 2 - 测试 1)。全球尺度d为 1.08,精度为 0.7849。
一些初步结果
在一项持续研究中,我们比较了61名9-12岁的多动症患者和一组67名年龄匹配的健康对照组(HC)。最后的统计分析迄今尚未完成。下面我们将介绍从 WinEEG 评估中获得的初步结果。
行为上,多动症组表现出一种不注意模式,与健康对照组 (HC) 组(13.7% 相对 4.8%)相比,在统计上(在 p<0.001)上出现更多的遗漏错误。伴随着注意力失误模式,以统计上较高的反应时间变化(p<0.001)表示(151毫秒对125毫秒)。
图5和图6显示了两组之间比较ERP波形的主要结果。图 5演示了多动症组主动认知控制功能障碍的 ERP 相关性。与HC组相比,多动症组减少了两个主动认知控制指数(P3提示波和CNV波)。图 6显示了多动症组反应性认知控制功能障碍的 ERP 相关性。与HC组相比,多动症组减少了两个反应认知控制指数(N2 NOGO和P3 NOGO)。
图5:多动症和健康控制(HC)组中主动认知控制(A)和相应地图(b)的大平均ERP波模式(a)和相应的地图(b)。(a) 在多动症组(绿线)和 HC 组(红线)及其差值 (ADHD-HC) 波 (蓝线) 中以 P3 测量的 ERP。曲线下方的蓝色垂直条表示差值的统计显著性水平(小条 - p<0.05,中间柱 - p<0.01,大柱 - p<0.001)。箭头指示经典波 - P3 提示和 CNV(或负变化)。(b) 以两组 P3 和 CNV 波的振幅最大值绘制地图。请点击此处查看此图形的较大版本。
图6:多动症和健康控制(HC)组反应性认知控制中大平均ERP波模式(a)和相应的地图(b)。(a) 在 Fz 和 Cz ADHD 组(绿线)和 HC 组(红线)及其差值 (ADHD-HC) 波(蓝线)中测量的 ERP。曲线下方的蓝色垂直条表示差值的统计显著性水平(小条 - p<0.05,中间柱 - p<0.01,大条 - p<0.001)。箭头表示经典波 - N2 NOGO 和 P3 NOGO。(b) 以两组 N2 NOGO 和 P3 NOGO 波的振幅最大值绘制地图。请点击此处查看此图形的较大版本。
正如人们所看到的,多动症组显示认知控制多种操作功能不足。这些操作发生在不同的时间窗口和不同的空间位置。特定患者可能只有一种功能不足,指示个体紊乱的来源及其矫正方法。
临床意义
为了计算临床上有用的生物标志物,用于异质诊断(如多动症),需要组合几个在多动症和控制之间显著差异的变量。索引的效果大小 (d) 应高于d = .8。当多动症与临床对照进行比较时,下一个重要的步骤是应用此索引。
精神病学的诊断是基于观察到的行为。在大多数情况下,必须在不同设置中观察指定数量的症状,持续 6 个月或更长时间。诊断过程的一个重要部分是排除体理学。此外,必须考虑其他精神诊断。通常,感兴趣的症状可能是另一个诊断类别的一部分。如果几个症状与其他疾病重叠,临床医生必须决定第二种疾病是合并或鉴别诊断。
可用的临床工具包括诊断访谈、评分等级、医学和发展史、心理测试和直接观察。这些方法大多相当主观;深受线人以及专业人士的影响。家长和教师的评分尺度通常显示相当温和的相关性(r = 0.3 - 0.5)。
在具有代表性的结果中,我们认为多动症的基本机制可能因患者而异。缺乏(语言)理解,自我激励的问题,对外部干扰者的敏感性等都会导致注意力不集中的症状。本文中描述的基于脑电图的方法可以帮助解决其中一些挑战。主观解释的问题不存在。所述的ERP方法似乎揭示了涉及特定大脑结构的基本心理操作,如工作记忆、行动抑制、监测、反应准备等。这些机制的缺陷并不限于特定的诊断类别。我们相信,在未来,治疗(药物,神经反馈,认知训练,tDCS,...)将侧重于这种认知和/或情绪操作及其潜在的大脑机制,而不是目前的诊断类别。
诊断的目的是确定最佳治疗方法。为了评估治疗的效果,自我报告和观察到的改善当然是决定性的。然而,此类报告在某种程度上可以代表安慰剂效应,并且应支持(部分)基本大脑功能障碍正常化,例如ERP组件的变化。这种主观和客观的治疗效果度量的结合在临床和研究中都非常重要。
由于上述原因,有相同诊断的人往往对同样的医疗没有反应也就不足为奇了。在个性化医学诊断中,辅以基于经验的反应预测措施,以精确定位单个患者的最佳治疗方法。本文介绍了我国对小儿多动症兴奋剂药物反应预测的研究。找到抗抑郁药物阳性反应的可靠预测变量可能更为重要,因为评估反应所需的时间很长,滴定期也是如此。本文中描述的程序有助于正在进行的脑电图和ERP研究,预测抑郁症的药物影响53。
所述基于脑电图的方法是非侵入性和负担得起的,非常适合研究和临床工作。
奥格里姆G.没有什么可透露的。Kropotov J.D.是圣彼得堡人脑研究所的实验室负责人,当时和地点是WinEEG项目。他在这个制度中没有经济利益。
没有。
Name | Company | Catalog Number | Comments |
amplifier + | www.mitsar-medical.com | ||
Body harness, different sizes | Electro-Cap International, Inc | E3 SM; E3 M; E3 L | |
Ear electrodes 9 mm sockets | Electro-Cap International, Inc | E5-9S | |
Electrocaps 19 channel different sizes | Electro-Cap International, Inc | E1 SM; E1 M; E1 M/SM | |
Electrocaps 19 channel different sizes | Electro-Cap International, Inc | E1 L/M; E1 L | |
Electrogel for electrocaps | Electro-Cap International, Inc | E9; E10 | |
HBi database | www.hbimed.com | ||
Head size measure band | Electro-Cap International, Inc | E 12 | |
Needle syringe kit | Electro-Cap International, Inc | E7 | |
Nuprep EEG and ECG skin prep gel | Electro-Cap International, Inc | R7 | |
Ten20 EEG conductive paste | Electro-Cap International, Inc | R5-4T | |
WinEEG program | www.mitsar-medical.com |
请求许可使用此 JoVE 文章的文本或图形
请求许可This article has been published
Video Coming Soon
版权所属 © 2025 MyJoVE 公司版权所有,本公司不涉及任何医疗业务和医疗服务。