A subscription to JoVE is required to view this content. Sign in or start your free trial.
Here, we developed a novel multilayered modified strategy for liquid-like bioinks (gelatin methacryloyl with low viscosity) to prevent the sedimentation of encapsulated cells.
During the extrusion-based three-dimensional bioprinting process, liquid-like bioinks with low viscosity can protect cells from membrane damage induced by shear stress and improve the survival of the encapsulated cells. However, rapid gravity-driven cell sedimentation in the reservoir could lead to an inhomogeneous cell distribution in bioprinted structures and therefore hinder the application of liquid-like bioinks. Here, we developed a novel multilayered modified strategy for liquid-like bioinks (e.g., gelatin methacryloyl with low viscosity) to prevent the sedimentation of encapsulated cells. Multiple liquid interfaces were manipulated in the multilayered bioink to provide interfacial retention. Consequently, the cell sedimentation action going across adjacent layers in the multilayered system was retarded in the bioink reservoir. It was found that the interfacial retention was much higher than the sedimental pull of cells, demonstrating a critical role of the interfacial retention in preventing cell sedimentation and promoting a more homogeneous dispersion of cells in the multilayered bioink.
Three-dimensional (3D) bioprinting has been a promising method to manufacture complex architectural and functional replicas of native tissues in biofabrication and regenerative medicine1,2,3. The common strategies of bioprinting, including inkjet, extrusion, and stereolithography printing, have pros and cons from different perspectives4. Among these techniques, the extrusion procedure is most commonly used due to its cost-effectiveness. Bioink plays a key role in the process stability of extrusion bioprinting. The ideal cell-laden bioink should not only be biocompatible but also be suitable for mechanical properties5. Bioinks with low viscosity are typically presented as a liquid-like state. These bioinks can be easily and quickly deposited and avoid cell membrane damage induced by high shear stress during extrusion. However, in complex cases requiring long-term printing periods, low viscosity often gives rise to the inevitable sedimentation of the encapsulated cells in the bioink reservoir, which is usually driven by gravity and leads to an inhomogeneous cell dispersion in the bioink6,7. Consequently, a bioink with inhomogeneous cell dispersity hampers the in vitro bioprinting of a functional tissue construct.
Several recent studies focusing on bioinks have reported the promotion of homogenous dispersity of encapsulated cells. A modified alginate bioink based on dual-stage crosslinking was used for extrusion bioprinting8. An alginate polymer was modified with peptides and proteins in this study. Cells presented a more homogeneous distribution in this modified alginate than in the commonly used alginate due to the attachment sites provided by the peptides and the proteins. Alternatively, blended bioinks have been utilized to solve the sedimentation of cells in bioink. A blended bioink containing polyethylene glycol (PEG) and gelatin or gelatin methacryloyl (GelMA) with improved mechanical robustness was used in another study9. The encapsulated cells presented a homogeneous distribution mainly because the viscosity of the blended bioink was improved. In general, there are several factors influencing the dispersity of the encapsulated cells in the bioink, such as the viscosity of the bioink, the gravity of the cells, the density of the cells, and the duration of the working period. Among these factors, the gravity of cells plays a critical role in promoting sedimentation. The buoyancy and friction provided by the viscous bioink have been investigated as the main forces against gravity to date10.
Herein, we developed a novel strategy to promote homogeneous dispersity of the encapsulated cells in bioink by manipulating multiple liquid interfaces in the bioink reservoir. These liquid interfaces created by the multilayered modification of bioink can not only provide interfacial retention, which retards the sedimentation of cells, but also maintain a suitable biocompatibility and rheological behavior of the bioink. In practice, we modified aqueous GelMA solution (5%, w/v) with silk fibroin (SF) in a multilayered manner to longitudinally produce four interfaces, providing interfacial tensions in the blended bioink. As a result, the gravity loading on the cells was offset by the man-made interfacial tension, and a nearly homogeneous dispersion of the encapsulated cells in the bioink was obtained due to less sedimentation across the adjacent layers of cells. No similar protocol to slow down the sedimentation of encapsulated cells by manipulating interfacial retention in liquid bioinks has been reported to date. We present our protocol here to demonstrate a new way to solve cell sedimentation in bioprinting.
1. Preparation of cell-laden SF-GelMA
2. Loading, reheating and bioprinting of the SF-M-Layered-GelMA
A schematic of the preparation of cell-laden bioinks is shown in Figure 1. After preparation of the different bioinks, loading, reheating and bioprinting were performed (Figure 2). To evaluate the distribution of the encapsulated cells in the bioink reservoir, a bioprinting procedure was performed using three different cell-laden bioinks in three 96-well plates (Figure 3A). Two control groups (pristine GelMA and SF-1-GelMA bioinks) ...
The stability of the multilayered system is a key point to perform this protocol successfully. We theoretically calculated the diffusion of SF molecules in the GelMA solution based on Nauman’s study13. It was found that the diffusion of proteins in solution was related to their molecular weight. The average molecular weight (MW) of bovine serum albumin (BSA) is 66.5 kDa, and its diffusion coefficient is 64-72 μm2/s. The average MW of fibrinogen is 339.7 kDa, and its diffusion...
The authors have nothing to disclose.
The authors acknowledge grants from the National Natural Science Foundation of China (81771971, 81970442, 81703470 and 81570422), National Key R&D Program of China (2018YFC1005002), Science and Technology Commission of Shanghai Municipality (17JC1400200), Shanghai Municipal Science and Technology Major Project (Grant No. 2017SHZDZX01), and Shanghai Municipal Education Commission (Innovation Program 2017-01-07-00-07-E00027).
Name | Company | Catalog Number | Comments |
2-Hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone (PI2959) | TCI | M64BK-QD | |
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) | Gibco | 15630080 | |
Dulbecco’s modified Eagle’s medium (DMEM) | Gibco | 10569044 | |
fetal bovine serum (FBS) | Gibco | 10091 | |
Gelatin | Sigma-Aldrich | V900863MSDS | |
Methacrylic anhydride (MA) | Sigma-Aldrich | 276685MSDS | |
Penicillin–streptomycin antibiotics | Gibco | 15140163 | |
Phosphate-buffered saline (PBS) | Gibco | 10010049 | |
Silk fibroin | Advanced BioMatrix | 5154 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved