A subscription to JoVE is required to view this content. Sign in or start your free trial.
Method Article
The goal of this protocol is to show the assembly of a biomimetic nanomatrix (NM) with Janus base nanotubes (JBNTs) and fibronectin (FN). When co-cultured with human mesenchymal stem cells (hMSCs), the NMs exhibit excellent bioactivity in encouraging hMSCs adhesion.
A biomimetic NM was developed to serve as a tissue-engineering biological scaffold, which can enhance stem cell anchorage. The biomimetic NM is formed from JBNTs and FN through self-assembly in an aqueous solution. JBNTs measure 200-300 µm in length with inner hydrophobic hollow channels and outer hydrophilic surfaces. JBNTs are positively charged and FNs are negatively charged. Therefore, when injected into a neutral aqueous solution, they are bonded together via noncovalent bonding to form the NM bundles. The self-assembly process is completed within a few seconds without any chemical initiators, heat source, or UV light. When the pH of the NM solution is lower than the isoelectric point of FNs (pI 5.5-6.0), the NM bundles will self-release due to the presence of positively charged FN.
NM is known to mimic the extracellular matrix (ECM) morphologically and hence, can be used as an injectable scaffold, which provides an excellent platform to enhance hMSC adhesion. Cell density analysis and fluorescence imaging experiments indicated that the NMs significantly increased the anchorage of hMSCs compared to the negative control.
Human mesenchymal stem cells (hMSCs) have shown the potential for self-renewal and self-differentiation along different mesenchymal lineages, which helps in the regeneration and maintenance of tissues1. Based on the differentiation potential, hMSCs are considered as candidates for mesenchymal tissue injuries and hematopoietic disorder therapy2. hMSCs have shown the ability to promote wound healing by increasing tissue repair, angiogenesis, and reducing inflammation3. However, without biochemical or biomaterials assistance, the efficiency for the hMSCs to reach a target tissue and function at the desired location is low4. Although various engineered scaffolds have been utilized to attract hMSCs to adhere onto the lesions, some sites such as growth plate fracture, in the middle of a long bone, are not easily accessible by the conventional pre-fabricated scaffolds, which may not fit perfectly into an irregularly shaped injured site.
Here, we have developed a biomimetic nanomaterial that can self-assemble in situ and be injected to a hard to reach target area. The injectable bio-scaffold NM is composed of Janus base nanotubes (JBNTs) and fibronectin (FN). JBNTs, also known as the Rosette Nanotubes (RNTs), are derived from DNA base pairs, specifically thymine and adenine, here5,6,7. As seen in Figure 1, the nanotubes are formed when six molecules of the derived DNA base pairs self-assemble via hydrogen bonds to form a plane6. Six molecules are then stacked onto each other in a plane via a strong pi-stacking interaction7, which can be up to 200-300 µm in length. The JBNTs are designed to morphologically mimic collagen fibers so that FN will react with them.
FN is a high molecular weight adhesive glycoprotein, which can be found in the extracellular matrix (ECM)9. These can mediate the attachment of stem cells to other components of the ECM, particularly collagen10. We designed JBNTs to morphologically mimic collagen fibers so FN can react with them to form NM in a few seconds via noncovalent bonding. Therefore, NM is a promising bio-scaffold to be injected into a bone fracture site that could not be accessible by the conventionally fabricated scaffolds. Here, the injectable NM presents an excellent ability to enhance hMSC anchorage in vitro, exhibiting their potential to serve as a scaffold for tissue regeneration.
1. Synthesis of JBNTs
NOTE: JBNT monomer was prepared as published previously11.
2. Fabrication for JBNT/FN
3. Observation of lyophilized specimens
NOTE: This step is performed to show the scaffold structure of NM made from JBNTs and FN.
4. Absorption spectra measurement
NOTE: Use the change of spectra for FN and JBNTs to present the self-assembled JBNT/FN NM12.
5. Preparation of JBNT/FN NM for transmission electronic microscopy (TEM)
6. In vitro biological function assay
Our studies discovered that the formation of the NM of JBNTs and FN is fast, which happened in 10 seconds. As shown in Figure 2, white floccule was obtained when the JBNT solution was mixed with the FN solution and pipetted several times. The formation process of NM is completely biomimetic. No external stimuli are needed. The process of fabrication is much easier than that of some emerging biomaterials, which is based on ultraviolet light or chemical initiator for crosslinking
In this study, we developed a self-assembled biomimetic NM, which was formed with DNA-inspired JBNTs and FN. When preparing the JBNT solution, the JBNT lyophilized powder should be dissolved into the water instead of PBS because PBS will cause agglomeration of JBNTs, which inhibits their assembly. Moreover, the NM should also be assembled in water if we want to observe the nano-fibril structures of the NM, because the salt in PBS will bundle with NM fibers, which can greatly reduce the resolution of the images.
Dr. Yupeng Chen is a co-founder of NanoDe Therapeutics, Inc.
This work is financially supported by NIH (Grants 1R01AR072027-01, 1R03AR069383-01), NSF Career Award (1653702) and University of Connecticut.
Name | Company | Catalog Number | Comments |
1,2-dichloroethane | Alfa Aesar | 39121 | |
2-cyanoacetic acid | Sigma-Aldrich | C88505 | |
4-Dimethylaminopyridine | TCI America | D1450 | |
8 wells Chambered Coverglass | Thermo Fisher | 155409 | |
96-well plate | Corning | 353072 | |
absolute ethanol | Thermo Fisher | BP2818500 | |
acetone | Sigma-Aldrich | 179124 | |
acetonitrile | Sigma-Aldrich | 34851 | |
allylamine | Sigma-Aldrich | 145831 | |
Basic Plasma Cleaner | Harrick Plasma | PDC32G | |
citric acid | Sigma-Aldrich | 251275 | |
concentrated hydrochloric acid | Sigma-Aldrich | H1758 | |
Deionized water | Thermo Fisher | 15230147 | |
dichloromethane | Sigma-Aldrich | 270997 | |
diethyl ether | Sigma-Aldrich | 296082 | |
Di-tert-butyl dicarbonate | Sigma-Aldrich | 361941 | |
ethyl acetate | Sigma-Aldrich | 319902 | |
ethylcarbamate | Sigma-Aldrich | U2500 | |
Fibronectin | Thermo Fisher | PHE0023 | |
Fixative Solution (4 % formaldehyde prepared in PBS) | Thermo Fisher | R37814 | |
guanidinium hydrochloride | Alfa Aesar | A13543 | |
hexanes | Sigma-Aldrich | 227064 | |
Human mesenchymal stem cells | Lonza | PT-2501 | |
methanol | Sigma-Aldrich | 34860 | |
methyl iodide | Sigma-Aldrich | 289566 | |
N,N-Diisopropylethylamine | Alfa Aesar | A17114 | |
N,N-dimethylformamide | Sigma-Aldrich | 227056 | |
N-Methylmorpholine N-oxide | Alfa Aesar | A19802 | |
Osmium tetraoxide | Alfa Aesar | 45385 | |
Penicillin-Streptomycin | Thermo Fisher | 15140163 | |
Phosphate Buffer Solution | Thermo Fisher | 20012050 | |
phosphoryl chloride | Sigma-Aldrich | 201170 | |
potassium carbonate | Sigma-Aldrich | 347825 | |
reverse phase column | Thermo Fisher | 25305-154630 | |
Rhodamine Phalloidin | Thermo Fisher | R415 | |
silica gel | TCI America | S0821 | |
sodium bicarbonate | Sigma-Aldrich | S6014 | |
sodium ethoxide | Alfa Aesar | L13083 | |
sodium periodide | Sigma-Aldrich | 71859 | |
sodium sulfate | Sigma-Aldrich | 239313 | |
sodium sulfite | Sigma-Aldrich | S0505 | |
sodium triacetoxyborohydride | Alfa Aesar | B22060 | |
spectrophotometer(NanoDrop One/Onec UV-Vis) | Thermo Fisher | ND-ONE-W | |
Stem Cell Growth Medium BulletKit | Lonza | PT-3001 | |
tetrahydrofuran | Sigma-Aldrich | 401757 | |
thioanisole | Sigma-Aldrich | T28002 | |
toluene | Sigma-Aldrich | 179418 | |
triethylamine | Alfa Aesar | A12646 | |
trifluoroacetic acid | Alfa Aesar | A12198 | |
Triton X-100 | Thermo Fisher | HFH10 | |
Trypsin-EDTA solution | Thermo Fisher | 25200056 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionThis article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved