A subscription to JoVE is required to view this content. Sign in or start your free trial.
* These authors contributed equally
Here we describe a cardiac pressure-volume loop analysis under increasing doses of intravenously infused isoproterenol to determine the intrinsic cardiac function and the β-adrenergic reserve in mice. We use a modified open-chest approach for the pressure-volume loop measurements, in which we include ventilation with positive end-expiratory pressure.
Determination of the cardiac function is a robust endpoint analysis in animal models of cardiovascular diseases in order to characterize effects of specific treatments on the heart. Due to the feasibility of genetic manipulations the mouse has become the most common mammalian animal model to study cardiac function and to search for new potential therapeutic targets. Here we describe a protocol to determine cardiac function in vivo using pressure-volume loop measurements and analysis during basal conditions and under β-adrenergic stimulation by intravenous infusion of increasing concentrations of isoproterenol. We provide a refined protocol including ventilation support taking into account the positive end-expiratory pressure to ameliorate negative effects during open-chest measurements, and potent analgesia (Buprenorphine) to avoid uncontrollable myocardial stress evoked by pain during the procedure. All together the detailed description of the procedure and discussion about possible pitfalls enables highly standardized and reproducible pressure-volume loop analysis, reducing the exclusion of animals from the experimental cohort by preventing possible methodological bias.
Cardiovascular diseases typically affect cardiac function. This issue points out the importance in assessing in vivo detailed cardiac function in animal disease models. Animal experimentation is surrounded by a frame of the three Rs (3Rs) guiding principles (Reduce/Refine/Replace). In case of understanding complex pathologies involving systemic responses (i.e., cardiovascular diseases) at the current developmental level, the main option is to refine the available methods. Refining will also lead to a reduction of the required animal numbers due to less variability, which improves the power of the analysis and conclusions. In addition, combination of cardiac contractility measurements with animal models of heart disease including those induced by neurohumoral stimulation or by pressure overload like aortic banding, which mimics for example altered catecholamine/β-adrenergic levels1,2,3,4, provides a powerful method for pre-clinical studies. Taking into account that the catheter-based method remains the most widely used approach for in depth assessment of cardiac contractility5, we aimed to present here a refined measurement of in vivo cardiac function in mice by pressure-volume loop (PVL) measurements during β-adrenergic stimulation based on previous experience including the evaluation of specific parameters of this approach6,7.
To determine cardiac hemodynamic parameters approaches that include imaging or catheter-based techniques are available. Both options are accompanied by advantages and disadvantages that carefully need to be considered for the respective scientific question. Imaging approaches include echocardiography and magnetic resonance imaging (MRI); both have been successfully used in mice. Echocardiographic measurements involve high initial costs from a high-speed probe required for the high heart rate of the mice; it is a relatively straightforward non-invasive approach, but it is variable among operators who ideally should be experienced recognizing and visualizing cardiac structures. In addition, no pressure measurements can be performed directly and calculations are obtained from combination of size magnitudes and flow measurements. On the other hand, it has the advantage that several measurements can be performed on the same animal and cardiac function can be monitored for example during disease progression. Regarding the volume measurement, the MRI is the gold standard procedure, but similar to echocardiography, no direct pressure measurements are possible and only preload dependent parameters can be obtained8. Limiting factors are also the availability, analysis effort and operating costs. Here catheter-based methods to measure cardiac function are a good alternative that additionally allow for the direct monitoring of intracardiac pressure and the determination of load-independent contractility parameters like preload recruitable stroke work (PRSW)9. However, ventricular volumes measured by a pressure-conductance catheter (through conductivity determination) are smaller than those from the MRI but group differences are maintained in the same range10. In order to determine reliable volume values the corresponding calibration is required, which is a critical step during the PVL measurements. It combines ex vivo measurements of blood conductivity in volume-calibrated cuvettes (conversion of conductance to volume) with the in vivo analysis for the parallel conductance of the myocardium during the bolus injection of the hypertonic saline11,12. Beyond that, the positioning of the catheter inside the ventricle and the correct orientation of the electrodes along the longitudinal axis of the ventricle are critical for the detection capability of the surrounding electrical field produced by them. Still with the reduced size of the mouse heart it is possible to avoid artifacts produced by changes in the intraventricular orientation of the catheter, even in dilated ventricles5,10, but artifacts can evolve under β-adrenergic stimulation6,13. Additional to the conductance methods the development of admittance based method appeared to avoid the calibration steps, but here the volume values are rather overestimated14,15.
Since the mouse is one of the most important pre-clinical models in cardiovascular research and the β-adrenergic reserve of the heart is of central interest in cardiac physiology and pathology, we here present a refined protocol to determine in vivo cardiac function in mice by PVL measurements during β-adrenergic stimulation.
All animal experiments were approved and performed according to the regulations of the Regional Council of Karlsruhe and the University of Heidelberg (AZ 35-9185.82/A-2/15, AZ 35-9185.82/A-18/15, AZ 35-9185.81/G131/15, AZ 35-9185.81/G121/17) conform to the guidelines from Directive 2010/63/EU of the European Parliament on the protection of animals used for scientific purposes. Data shown in this protocol are derived from wild type C57Bl6/N male mice (17 ± 1.4 weeks of age). Mice were maintained under specified pathogen-free conditions at the animal facility (IBF) of the Heidelberg Medical Faculty. Mice were housed in a 12-hour light-dark cycle, with a relative humidity between 56-60%, a 15-times air change per hour and room temperature of 22°C +/- 2°C. They were kept in conventional cages type II or type II long provided with animal bedding and tissue papers as enrichment. Standard autoclaved food and autoclaved water were available to consume ad libitum.
1. Preparation of instruments and drug solutions
2. Anesthesia
3. Ventilation
4. Surgery
5. Measurements
6. Calibration
NOTE: Calibration procedures may vary depending on the PVL system used.
7. Analysis
The pressure volume-loop (PVL) measurement is a powerful tool to analyze cardiac pharmacodynamics of drugs and to investigate the cardiac phenotype of genetically modified mouse models under normal and pathological conditions. The protocol allows the assessment of cardiac β-adrenergic reserve in the adult mouse model. Here we describe an open-chest method under isoflurane anesthesia combined with buprenorphine (analgesic) and pancuronium (muscle relaxant), which focuses on the cardiac response to β-adrenergic s...
Here, we provide a protocol to analyze the in vivo cardiac function in mice under increasing β-adrenergic stimulation. The procedure can be used to address both, baseline parameters of cardiac function and the adrenergic reserve (e.g., inotropy and chronotropy) in genetically modified mice or upon interventions. The most prominent advantage of pressure-volume loop (PVL) measurements as compared to other means of determining cardiac function is the analysis of intrinsic, load-independent cardiac function. All other m...
No conflict of interest has to be declared.
We are thankful to Manuela Ritzal, Hans-Peter Gensheimer, Christin Richter and the team from the Interfakultäre Biomedizinische Forschungseinrichtung (IBF) from the Heidelberg University for expert technical assistance.
This work was supported by the DZHK (German Centre for Cardiovascular Research), the BMBF (German Ministry of Education and Research), a Baden-Württemberg federal state Innovation fonds and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Project-ID 239283807 - TRR 152, FOR 2289 and the Collaborative Research Center (SFB) 1118.
Name | Company | Catalog Number | Comments |
1.4F SPR-839 catheter | Millar Instruments, USA | 840-8111 | |
1 ml syringes | Beckton Dickinson, USA | REF303172 | |
Bio Amplifier | ADInstruments, USA | FE231 | |
Bridge-Amplifier | ADInstruments, USA | FE221 | |
Bovine Serum Albumin | Roth, Germany | 8076.2 | |
Buprenorphine hydrochloride | Bayer, Germany | 4007221026402 | |
Calibration cuvette | Millar, USA | 910-1049 | |
Differential pressure transducer MPX | Hugo Sachs Elektronik- Harvard Apparatus, Germany | Type 39912 | |
Dumont Forceps #5/45 | Fine Science tools Inc. | 11251-35 | |
Dumont Forceps #7B | Fine Science tools Inc. | 11270-20 | |
Graefe Forceps | Fine Science tools Inc. | 11051-10 | |
GraphPad Prism | GraphPad Software | Ver. 8.3.0 | |
EcoLab-PE-Micotube | Smiths, USA | 004/310/168-1 | |
Etomidate Lipuro | Braun, Germany | 2064006 | |
Excel | Microsoft | ||
Heparin | Ratiopharm, Germany | R26881 | |
Hot plate and control unit | Labotec, Germany | Hot Plate 062 | |
Isofluran | Baxter, Germany | HDG9623 | |
Isofluran Vaporizer | Abbot | Vapor 19.3 | |
Isoprenalinhydrochloride | Sigma-Aldrich, USA | I5627 | |
Fine Bore Polythene tubing 0.61 mm OD, 0.28 mm ID | Smiths Medical International Ltd, UK | Ref. 800/100/100 | |
MiniVent ventilator for mice | Hugo Sachs Elektronik- Harvard Apparatus, Germany | Type 845 | |
MPVS Ultra PVL System | Millar Instruments, USA | ||
NaCl | AppliChem, Germany | A3597 | |
NaCl 0.9% isotonic | Braun, Germany | 2350748 | |
Pancuronium-bromide | Sigma-Aldrich, USA | BCBQ8230V | |
Perfusor 11 Plus | Harvard Apparatus | Nr. 70-2209 | |
Powerlab 4/35 control unit | ADInstruments, USA | PL3504 | |
Rechargeable cautery-Set | Faromed, Germany | 09-605 | |
Scissors | Fine Science tools Inc. | 140094-11 | |
Software LabChart 7 Pro | ADInstruments, USA | LabChart 7.3 Pro | |
Standard mouse food | LASvendi GmbH, Germany | Rod18 | |
Stereo microscope | Zeiss, Germany | Stemi 508 | |
Surgical suture 8/0 | Suprama, Germany | Ch.B.03120X | |
Venipuncture-cannula Venflon Pro Safty 20-gauge | Beckton Dickinson, USA | 393224 | |
Vessel Cannulation Forceps | Fine Science tools Inc. | 00574-11 | |
Water bath | Thermo Fisher Scientific, USA | ||
Syringe filter (Filtropur S 0.45) | Sarstedt, Germany | Ref. 83.1826 |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved
We use cookies to enhance your experience on our website.
By continuing to use our website or clicking “Continue”, you are agreeing to accept our cookies.