JoVE Logo
Faculty Resource Center

Sign In

Abstract

Biochemistry

Myosin-Specific Adaptations of In vitro Fluorescence Microscopy-Based Motility Assays

Published: February 4th, 2021

DOI:

10.3791/62180

1Laboratory of Molecular Physiology, Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, 2Department of Physiology, Perelman School of Medicine, University of Pennsylvania

Myosin proteins bind and interact with filamentous actin (F-actin) and are found in organisms across the phylogenetic tree. Their structure and enzymatic properties are adapted for the particular function they execute in cells. Myosin 5a processively walks on F-actin to transport melanosomes and vesicles in cells. Conversely, nonmuscle myosin 2b operates as a bipolar filament containing approximately 30 molecules. It moves F-actin of opposite polarity toward the center of the filament, where the myosin molecules work asynchronously to bind actin, impart a power stroke, and dissociate before repeating the cycle. Nonmuscle myosin 2b, along with its other nonmuscle myosin 2 isoforms, has roles that include cell adhesion, cytokinesis, and tension maintenance. The mechanochemistry of myosins can be studied by performing in vitro motility assays using purified proteins. In the gliding actin filament assay, the myosins are bound to a microscope coverslip surface and translocate fluorescently labeled F-actin, which can be tracked. In the single molecule/ensemble motility assay, however, F-actin is bound to a coverslip and the movement of fluorescently labeled myosin molecules on the F-actin is observed. In this report, the purification of recombinant myosin 5a from Sf9 cells using affinity chromatography is outlined. Following this, we outline two fluorescence microscopy-based assays: the gliding actin filament assay and the inverted motility assay. From these assays, parameters such as actin translocation velocities and single molecule run lengths and velocities can be extracted using the image analysis software. These techniques can also be applied to study the movement of single filaments of the nonmuscle myosin 2 isoforms, discussed herein in the context of nonmuscle myosin 2b. This workflow represents a protocol and a set of quantitative tools that can be used to study the single molecule and ensemble dynamics of nonmuscle myosins.

Tags

Keywords Myosin

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved