A subscription to JoVE is required to view this content. Sign in or start your free trial.
The objective of this study was to determine whether nanoparticle tracking analysis (NTA) could detect and quantify urinary calcium containing nanocrystals from healthy adults. The findings from the current study suggest NTA could be a potential tool to estimate urinary nanocrystals during kidney stone disease.
Kidney stones are becoming more prevalent worldwide in adults and children. The most common type of kidney stone is comprised of calcium oxalate (CaOx) crystals. Crystalluria occurs when urine becomes supersaturated with minerals (e.g., calcium, oxalate, phosphate) and precedes kidney stone formation. Standard methods to assess crystalluria in stone formers include microscopy, filtration, and centrifugation. However, these methods primarily detect microcrystals and not nanocrystals. Nanocrystals have been suggested to be more harmful to kidney epithelial cells than microcrystals in vitro. Here, we describe the ability of Nanoparticle Tracking analysis (NTA) to detect human urinary nanocrystals. Healthy adults were fed a controlled oxalate diet prior to drinking an oxalate load to stimulate urinary nanocrystals. Urine was collected for 24 hours before and after the oxalate load. Samples were processed and washed with ethanol to purify samples. Urinary nanocrystals were stained with the calcium binding fluorophore, Fluo-4 AM. After staining, the size and count of nanocrystals were determined using NTA. The findings from this study show NTA can efficiently detect nanocrystalluria in healthy adults. These findings suggest NTA could be a valuable early detection method of nanocrystalluria in patients with kidney stone disease.
Urinary crystals form when urine becomes supersaturated with minerals. This can occur in healthy individuals but is more common in individuals with kidney stones1. The presence and accumulation of urinary crystals can increase one's risk of developing a kidney stone. Specifically, this occurs when crystals bind to Randall's plaque, nucleate, accumulate, and grow over time2,3,4. Crystalluria precedes kidney stone formation and assessment of crystalluria may have predictive value in kidney stone formers3,5. Specifically, crystalluria has been suggested to be useful to predict the risk of stone recurrence in patients with a history of calcium oxalate containing stones6,7.
Crystals have been reported to negatively impact renal epithelial and circulating immune cell function8,9,10,11,12,13. It has been previously reported that circulating monocytes from calcium oxalate (CaOx) kidney stone formers have suppressed cellular bioenergetics compared to healthy individuals14. In addition, CaOx crystals reduce cellular bioenergetics and disrupt redox homeostasis in monocytes8. Consumption of meals rich in oxalate may cause crystalluria which could lead to renal tubule damage and alter the production and function of urinary macromolecules that are protective against kidney stone formation15,16. Several studies have demonstrated that urinary crystals can vary in shape and size depending on the pH and temperature of the urine17,18,19. Further, urinary proteins have been shown to modulate crystal behavior20. Daudon et al.19, proposed that crystalluria analysis could be helpful in the management of patients with kidney stone disease and in assessing their response to therapies. A few conventional methods currently available to evaluate the presence of crystals include polarized microscopy21,22, electron microscopy23, particle counters3, urine filtration24, evaporation3,5 or centrifugation21. These studies have provided valuable insight to the kidney stone field regarding crystalluria. However, a limitation of these methods has been the inability to visualize and quantify crystals less than 1 µm in size. Crystals of this size may influence the growth of CaOx stones by attaching to Randall's plaque.
Nanocrystals have been shown to cause extensive injury to renal cells compared to larger microcrystals25. The presence of nanocrystals has been reported in urine using a nanoparticle analyzer26,27. Recent studies have used fluorescently labeled bisphosphate probes (alendronate-fluorescein/alendronate-Cy5) to examine nanocrystals using nanoscale flow cytometry28. The limitation of this dye is that it is not specific and will bind to almost all types of stones except cysteine. Thus, accurately assessing the presence of nanocrystals in individuals may be an effective tool to diagnose crystalluria and/or predict stone risk. The purpose of this study was to detect and quantify calcium containing nanocrystals (<1 µm in size) using nanoparticle tracking analysis (NTA). To achieve this, NTA technology was used in combination with a calcium binding fluorophore, Fluo-4 AM to detect and quantify calcium containing nanocrystals in the urine of healthy adults.
All experiments outlined in this work were approved by the University of Alabama at Birmingham (UAB) Institutional Review Board. Healthy adults (33.6 ± 3.3 years old; n=10) were enrolled in the study if they had a normal blood comprehensive metabolic panel, non-tobacco users, non-pregnant, a BMI between 20-30 kg/m2, and free of chronic medical conditions or acute illnesses. Healthy participants signed a written informed consent form prior to the start of the study.
1. Clinical protocol and urine collection
2. Urine Processing
NOTE: All materials and equipment used are listed in Table of Materials.
CAUTION: Wear personal protective equipment at all times while handling clinical samples and reagents. Specifically, gloves, face and eye shields, respiratory protection, and protective clothing.
3. Nanoparticle Tracking Analysis (NTA)
The findings from this study show NTA can efficiently detect the mean size and concentration of calcium containing urinary nanocrystals in human urine. This was achieved by using the fluorophore, Fluo-4 AM, and nanoparticle tracking analysis. Fluo-4 AM was able to bind to both CaOx and CaP crystals. As shown in Figure 3A, CaOx crystals were determined to be between 50-270 nm in size and have a mean concentration of 1.26 x 109 particles/mL. CaP crystals were between 30-225 nm in si...
NTA has been used in the present study to assess nanocrystals in human urine using a calcium binding probe, Fluo-4 AM. There is no standard method available to detect nanocrystals in the urine. Some research groups have detected nanocrystals in the urine and relied on the use of extensive protocols or methods that are limited in their ability to quantify the samples27,28. This study shows a specific and sensitive method for detecting calcium containing nanocrysta...
The authors declare no conflicts of interest.
The authors thank all study participants and the UAB CCTS Bionutrition Core and UAB High Resolution Imaging Service Center for their contributions. This work was supported by NIH grants DK106284 and DK123542 (TM), and UL1TR003096 (National Center for Advancing Translational Sciences).
Name | Company | Catalog Number | Comments |
Benchtop Centrifuge | Jouan Centrifuge | CR3-12 | |
Calcium Oxalate monohydrate | Synthesized in the lab as previously described29. | Store at RT; Stock 10 mM | |
Calcium Phosphate crystals (hydroxyapatite nanopowder) | Sigma | 677418 | Store at RT; Stock 10 mM |
Ethanol | Fischer Scientific | AC615095000 | Store at RT; Stock 100% |
Fluo-4 AM* | AAT Bioquest, Inc. | 20550 | Store at Freezer (-20°C); Stock 5 mM |
Gold Nanoparticles | Sigma | 742031 | Store at 2-8°C |
NanoSight Instrument | Malvern Instruments, UK | NS300 | |
Syringe pump | Harvard Apparatus | 98-4730 | |
Virkon Disinfectant | LanXESS Energizing Company, Germany | LSP | |
*Fluorescence dyes are light sensitive; stock and aliquots should be stored in the dark at -20°C. |
Request permission to reuse the text or figures of this JoVE article
Request PermissionExplore More Articles
This article has been published
Video Coming Soon
Copyright © 2025 MyJoVE Corporation. All rights reserved