JoVE Logo
Faculty Resource Center

Sign In

Summary

Abstract

Introduction

Protocol

Representative Results

Discussion

Acknowledgements

Materials

References

Bioengineering

In Vitro 3D Cell-Cultured Arterial Models for Studying Vascular Drug Targeting Under Flow

Published: March 14th, 2021

DOI:

10.3791/62279

1Department of Biomedical Engineering, Technion - IIT

Here, we present a new protocol to study and map the targeted deposition of drug carriers to endothelial cells in fabricated, real-sized, three-dimensional human artery models under physiological flow. The presented method may serve as a new platform for targeting drug carriers within the vascular system.

The use of three-dimensional (3D) models of human arteries, which are designed with the correct dimensions and anatomy, enables the proper modeling of various important processes in the cardiovascular system. Recently, although several biological studies have been performed using such 3D models of human arteries, they have not been applied to study vascular targeting. This paper presents a new method to fabricate real-sized, reconstructed human arterial models using a 3D printing technique, line them with human endothelial cells (ECs), and study particle targeting under physiological flow. These models have the advantage of replicating the physiological size and conditions of blood vessels in the human body using low-cost components. This technique may serve as a new platform for studying and understanding drug targeting in the cardiovascular system and may improve the design of new injectable nanomedicines. Moreover, the presented approach may provide significant tools for the study of targeted delivery of different agents for cardiovascular diseases under patient-specific flow and physiological conditions.

Several approaches have recently been applied utilizing 3D models of human arteries1,2,3,4,5. These models replicate the physiological anatomy and environment of different arteries in the human body in vitro. However, they have been mainly used in cell biology studies. Current studies on vascular targeting of particles to the endothelium include in silico computational simulations6,7,8, in vit....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

NOTE: This protocol describes the fabrication of a 3D model of the carotid artery and can be applied to generate any other artery of interest by simply modifying the geometric parameters.

1. Design and fabrication of a 3D bifurcation of the human carotid artery model

  1. Choose images from patients or previously studied geometries of the human carotid artery bifurcation, and create a computer-aided design model of the mold that needs to be printed.
    NOTE: The carotid artery bifur.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This paper presents a new protocol to map the deposition of particles inside real-sized 3D human artery models, which may provide a new platform for drug delivery research. Using a 3D printing technique, a model of the human carotid bifurcation artery was fabricated (Figure 2). The model was made of silicone rubber and seeded with human ECs (Figure 3). Importantly, this protocol enabled the replication of physiological conditions, especially with respect to flui.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Current approaches to study vascular targeting of particles fall short in replicating the physiological conditions present in the human body. Presented here is a protocol to fabricate 3D-reconstructed models of human arteries to study particle targeting to the ECs lining the artery under physiological flow applied using a customized perfusion system. When choosing the material for 3D printing, it is best to use a clear plastic to avoid pigment transfer to the silicone model, which should be as transparent as possible. In.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

This work was supported by the Israel Science Foundation (ISF grant # 902/18). Maria Khoury's scholarship was supported by The Baroness Ariane de Rothschild Women Doctoral Program.

....

Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
3D printer FormLabs PKG-F2-REFURB
Acetone, absolute (AR grade)
Connectors Nordson Medical FTLL013-1 Female Luer
FTLL230-1 Female Luer
FTLL360-1 Female Luer
LP4-1 Male Luer Integral Lock
Damper Thermo-Fisher Scientific DS2127-0250 Nalgene Polycarbonate, Validation Bottle
Damper Cover Thermo-Fisher Scientific 2162-0531 Nalgene Filling/Venting Closures
Elastosil Elastosil RT 601 A Wacker 60003805
Elastosil RT 601 B Wacker 60003817 The crosslinker
Endothelial Cell Media ScienCell 1001
Fibrontectin Sigma Aldrich F0895-5mg
HUVEC Lonza CC-2519
Isopropyl alcohol, AR grade 99.5% Remove plastic dust from the sanded model
Lacquer Rust-Oleum 2X-Ultra cover Gloss Clear
Matlab Mathworks https://www.mathworks.com/products/matlab.html
Microscope Nikon SMZ25
Microscope Camera Nikon DS-Qi2
Peristaltic pump Watson Marlow 530U IP31 With 2 pumpheads: 313D
Plastic tube clamp Quickun 1-2240-stopvalve-2pcs
Polystyrene Particles  Thermo-Fisher Scientific  F8827  Diameter = 2 µm
Printer resin FormLabs RS-F2-GPCL-04
Rotator ELMI Ltd. Intelli-Mixer RM-2
Solidworks  SolidWorks Corp., Dassault Systèmes https://www.solidworks.com/
Tubing Watson Marlow 933.0064.016 Tubing for the pump: 6.4 mm ID
All the other tubing: Silicon tubing: 4 mm ID

  1. Chiu, J. J., et al. Analysis of the effect of disturbed flow on monocytic adhesion to endothelial cells. Journal of Biomechanics. 36 (12), 1883-1895 (2003).
  2. Martorell, J., et al. Extent of flow recirculation governs expression of atherosclerotic and thrombotic biomarkers in arterial bifurcations. Cardiovascular Research. 103 (1), 37-46 (2014).
  3. Karino, T., Goldsmith, H. L. Flow behaviour of blood cells and rigid spheres in an annular vortex. Philosophical transactions of the Royal Society of London. Series B, Biological. 279 (967), 413-445 (1977).
  4. Goldsmith, H. L., Karino, T. Platelets in a region of disturbed flow. Transactions - American Society for Artificial Internal Organs. 23, 632-638 (1977).
  5. Farcas, M. A., Rouleau, L., Fraser, R., Leask, R. L. The development of 3-D, in vitro, endothelial culture models for the study of coronary artery disease. Biomedical Engineering Online. 8, 30 (2009).
  6. Peng, B., et al. Modeling nanoparticle targeting to a vascular surface in shear flow through diffusive particle dynamics. Nanoscale Research Letters. 10 (1), 942 (2015).
  7. Shah, S., Liu, Y., Hu, W., Gao, J. Modeling particle shape-dependent dynamics in nanomedicine. Journal of Nanoscience and Nanotechnology. 11 (2), 919-928 (2011).
  8. Hossain, S. S., Hughes, T. J., Decuzzi, P. Vascular deposition patterns for nanoparticles in an inflamed patient-specific arterial tree. Biomechanics and Modeling in Mechanobiology. 13 (3), 585-597 (2014).
  9. Charoenphol, P., Huang, R. B., Eniola-Adefeso, O. Potential role of size and hemodynamics in the efficacy of vascular-targeted spherical drug carriers. Biomaterials. 31 (6), 1392-1402 (2010).
  10. Ta, H. T., Truong, N. P., Whittaker, A. K., Davis, T. P., Peter, K. The effects of particle size, shape, density and flow characteristics on particle margination to vascular walls in cardiovascular diseases. Expert Opinion on Drug Delivery. 15 (1), 33-45 (2018).
  11. Cooley, M., et al. Influence of particle size and shape on their margination and wall-adhesion: implications in drug delivery vehicle design across nano-to-micro scale. Nanoscale. 10 (32), 15350-15364 (2018).
  12. Jiang, X. Y., et al. Quantum dot interactions and flow effects in angiogenic zebrafish (Danio rerio) vessels and human endothelial cells. Nanomedicine: Nanotechnology, Biology, and Medicine. 13 (3), 999-1010 (2017).
  13. Zarins, C. K., et al. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circulation Research. 53 (4), 502-514 (1983).
  14. Chien, S. Effects of disturbed flow on endothelial cells. Annals of Biomedical Engineering. 36 (4), 554-562 (2008).
  15. Malek, A. M., Alper, S. L., Izumo, S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 282 (21), 2035-2042 (1999).
  16. Glagov, S., Zarins, C., Giddens, D. P., Ku, D. N. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Archives of Pathology & Laboratory Medicine. 112 (10), 1018-1031 (1988).
  17. Khoury, M., Epshtein, M., Zidan, H., Zukerman, H., Korin, N. Mapping deposition of particles in reconstructed models of human arteries. Journal of Controlled Release. 318, 78-85 (2020).

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved