JoVE Logo
Faculty Resource Center

Sign In

Abstract

Biochemistry

Preparation of Sample Support Films in Transmission Electron Microscopy using a Support Floatation Block

Published: April 8th, 2021

DOI:

10.3791/62321

1Section of Structural & Synthetic Biology, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, South Kensington Campus

Structure determination by cryo-electron microscopy (cryo-EM) has rapidly grown in the last decade; however, sample preparation remains a significant bottleneck. Macromolecular samples are ideally imaged directly from random orientations in a thin layer of vitreous ice. However, many samples are refractory to this, and protein denaturation at the air-water interface is a common problem. To overcome such issues, support films-including amorphous carbon, graphene, and graphene oxide-can be applied to the grid to provide a surface which samples can populate, reducing the probability of particles experiencing the deleterious effects of the air-water interface. The application of these delicate supports to grids, however, requires careful handling to prevent breakage, airborne contamination, or extensive washing and cleaning steps. A recent report describes the development of an easy-to-use floatation block that facilitates wetted transfer of support films directly to the sample. Use of the block minimizes the number of manual handling steps required, preserving the physical integrity of the support film, and the time over which hydrophobic contamination can accrue, ensuring that a thin film of ice can still be generated. This paper provides step-by-step protocols for the preparation of carbon, graphene, and graphene oxide supports for EM studies.

Tags

Keywords Transmission Electron Microscopy

This article has been published

Video Coming Soon

JoVE Logo

Privacy

Terms of Use

Policies

Research

Education

ABOUT JoVE

Copyright © 2024 MyJoVE Corporation. All rights reserved