Abstract
Biochemistry
ERRATUM NOTICE
Important: There has been an erratum issued for this article. Read more …Presented here is a protocol for preparing cryo-lamellae from plunge-frozen grids of Plasmodium falciparum-infected human erythrocytes, which could easily be adapted for other biological samples. The basic principles for preparing samples, milling, and viewing lamellae are common to all instruments and the protocol can be followed as a general guide to on-grid cryo-lamella preparation for cryo-electron microscopy (cryoEM) and cryo-electron tomography (cryoET). Electron microscopy grids supporting the cells are plunge-frozen into liquid nitrogen-cooled liquid ethane using a manual or automated plunge freezer, then screened on a light microscope equipped with a cryo-stage. Frozen grids are transferred into a cryo-scanning electron microscope equipped with a focused ion beam (cryoFIB-SEM). Grids are routinely sputter coated prior to milling, which aids dispersal of charge build-up during milling. Alternatively, an e-beam rotary coater can be used to apply a layer of carbon-platinum to the grids, the exact thickness of which can be more precisely controlled. Once inside the cryoFIB-SEM an additional coating of an organoplatinum compound is applied to the surface of the grid via a gas injection system (GIS). This layer protects the front edge of the lamella as it is milled, the integrity of which is critical for achieving uniformly thin lamellae. Regions of interest are identified via SEM and milling is carried out in a step-wise fashion, reducing the current of the ion beam as the lamella reaches electron transparency, in order to avoid excessive heat generation. A grid with multiple lamellae is then transferred to a transmission electron microscope (TEM) under cryogenic conditions for tilt-series acquisition. A robust and contamination-free workflow for lamella preparation is an essential step for downstream techniques, including cellular cryoEM, cryoET, and sub-tomogram averaging. Development of these techniques, especially for lift-out and milling of high-pressure frozen samples, is of high-priority in the field.
Erratum
Erratum: Preparing Lamellae from Vitreous Biological Samples using a Dual-Beam Scanning Electron Microscope for Cryo-Electron TomographyAn erratum was issued for: Preparing Lamellae from Vitreous Biological Samples using a Dual-Beam Scanning Electron Microscope for Cryo-Electron Tomography. The Authors section was updated from:
Claudine Bisson1,2
Corey W. Hecksel3,4
James B. Gilchrist3
Roland A. Fleck1
1Centre for Ultrastructural Imaging, New Hunt’s House, Guy’s Campus, King’s College London
2Department of Biological Science, Birkbeck College, University of London
3Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus
4SLAC National Accelerator Laboratory, Stanford University
to:
Claudine Bisson1,2
Corey W. Hecksel3,4
James B. Gilchrist3
M. Alejandra Carbajal1
Roland A. Fleck1
1Centre for Ultrastructural Imaging, New Hunt’s House, Guy’s Campus, King’s College London
2Department of Biological Science, Birkbeck College, University of London
3Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus
4SLAC National Accelerator Laboratory, Stanford University
ABOUT JoVE
Copyright © 2024 MyJoVE Corporation. All rights reserved