JoVE Logo
Faculty Resource Center

Sign In





Representative Results






Monitoring Dynamic Growth of Retinal Vessels in Oxygen-Induced Retinopathy Mouse Model

Published: April 2nd, 2021



1State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University

This protocol describes a detailed method for the preparation and immunofluorescence staining of mice retinal flat mounts and analysis. The use of fluorescein fundus angiography (FFA) for mice pups and image processing are described in detail as well.

Oxygen-induced retinopathy (OIR) is widely used to study abnormal vessel growth in ischemic retinal diseases, including retinopathy of prematurity (ROP), proliferative diabetic retinopathy (PDR), and retinal vein occlusion (RVO). Most OIR studies observe retinal neovascularization at specific time points; however, the dynamic vessel growth in live mice along a time course, which is essential for understanding the OIR-related vessel diseases, has been understudied. Here, we describe a step-by-step protocol for the induction of the OIR mouse model, highlighting the potential pitfalls, and providing an improved method to quickly quantify areas of vaso-obliteration (VO) and neovascularization (NV) using immunofluorescence staining. More importantly, we monitored vessel regrowth in live mice from P15 to P25 by performing fluorescein fundus angiography (FFA) in the OIR mouse model. The application of FFA to the OIR mouse model allows us to observe the remodeling process during vessel regrowth.

Retinal neovascularization (RNV), which is defined as a state where new pathologic vessels originate from existing retinal veins, usually extends along the inner surface of the retina and grows into the vitreous (or subretinal space under some conditions)1. It is a hallmark and common feature of many ischemic retinopathies, including retinopathy of prematurity (ROP), retinal vein occlusion (RVO), and proliferative diabetic retinopathy (PDR)2.

Numerous clinical and experimental observations have indicated that ischemia is the main cause of retinal neovascularization3

Log in or to access full content. Learn more about your institution’s access to JoVE content here

All procedures involving the use of mice were approved by the animal experimental ethics committee of Zhongshan Ophthalmic Center, Sun Yat-sen University, China (authorized number: 2020-082), and in accordance with the approved guidelines of Animal Care and Use Committee of Zhongshan Ophthalmic Center and the Association Research in Vision and Ophthalmology (ARVO) Statement for the Use of Animals in Ophthalmic and Vision Research.

1. Induction of mouse OIR model

  1. Use mice with a low.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

In the OIR mouse model, the most important and basic result is the quantification of the VO and NV area. After living in the hyperoxia environment for 5 days from P7, the central retina of the pups showed the largest non-perfusion area. Under the stimulation of hypoxia in another 5 days, retinal neovascularization was gradually produced which fluoresced more intensely than surrounding normal vessels. After P17, the fluorescence signal of pathological neovascularization regressed rapidly as the remodeling of the retina (<.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

The susceptibility of mice to OIR is affected by many factors. The pups of different genetic background and strains cannot be compared. In BALB/c albino mice, vessels regrow into the VO area rapidly with significant reduced neovascular tufts38, which bring some difficulties to the research. In C57BL/6 mice, there is increased photoreceptor damage when compared to BALB/cJ mouse strain39,40. The same goes for different types of transgenic mi.......

Log in or to access full content. Learn more about your institution’s access to JoVE content here

We thank all the members from our lab and Ophthalmic Animal Laboratory of Zhongshan Ophthalmic Center for their technical assistance. We also thank Prof. Chunqiao Liu for experimental support. This work was supported by grants from the National Natural Science Foundation of China (NSFC: 81670872; Beijing, China), the Natural Science Foundation of Guangdong Province, China (Grant No.2019A1515011347), and High-level hospital construction project from State Key Laboratory of Ophthalmology at Zhongshan Ophthalmic Center (Grant No. 303020103; Guangzhou, Guangdong Province, China).


Log in or to access full content. Learn more about your institution’s access to JoVE content here

Name Company Catalog Number Comments
1 mL sterile syringe Solarbio YA0550 For preparation of retinal flat mounts and intraperitoneal injection
1× Phosphate buffered saline (PBS) Transgen Biotech  FG701-01 For preparation of retinal flat mounts
2 ml Microcentrifuge Tube Corning MCT-200-C For preparation of retinal flat mounts
48 Well Clear TC-Treated Multiple Well Plates Corning 3548 For preparation of retinal flat mounts
Adhesive microscope slides Various For preparation of retinal flat mounts
Adobe Photoshop CC 2019 Adobe Inc. For image analysis
Carbon dioxide gas Various For sacrifice
Cover slide Various For preparation of retinal flat mounts
Curved forceps World Precision Instruments 14127 For preparation of retinal flat mounts
DAPI staining solution Abcam ab228549 For labeling nucleus on retinal flat mounts
Dissecting microscope Olmpus SZ61 For preparation of retinal flat mounts
Fluorescein sodium Sigma-Aldrich F6377 For in vivo imaging
Fluorescent Microscope  Zeiss AxioImager.Z2 For acquisition of fluorescence images of retinal flat mounts
Fluoromount-G Mounting media SouthernBiotech  0100-01 For preparation of retinal flat mounts
Hydroxypropyl Methylcellulose Maya 89161 For in vivo imaging
Isolectin B4 594 antibody Invitrogen I21413 For labeling retinal vasculature on retinal flat mounts
Mice C57/BL6J GemPharmatech of Jiangsu Province For OIR model induction
Micro dissecting scissors-straight blade World Precision Instruments 503242 For preparation of retinal flat mounts
No.4 straight forceps World Precision Instruments  501978-6 For preparation of retinal flat mounts
Normal donkey serum Abcam ab7475 For preparation of retinal flat mounts
O2 sensor Various For monitoring the level of O2
OxyCycler Biospherix A84XOV For OIR model induction
Paraformaldehyde (PFA) Sigma P6148-1KG For tissue fixation
Pentobarbital sodium Various For anesthesia
Soda lime Various For absorbing excess CO2 in the oxygen chamber
SPECTRALIS HRA+OCT Heidelberg HC00500002 For in vivo imaging
SPSS Statistics 22.0 IBM For statistical analysis
Tansference decloring shaker Kylin-Bell ZD-2008 For preparation of retinal flat mounts
Tissue culture dish (Low attachment) Corning 3261-20EA For preparation of retinal flat mounts
Transfer pipettes Various For preparation of retinal flat mounts
Triton X-100 Sigma-Aldrich  SLBW6818 For preparation of retinal flat mounts
Tropicamide Various For in vivo imaging
ZEN Imaging Software ZEISS For image acquisition and export

  1. Vavvas, D. G., Miller, J. W. Chapter 26 - Basic Mechanisms of Pathological Retinal and Choroidal Angiogenesis. Retina (Fifth Edition). 1, 562-578 (2013).
  2. Selvam, S., Kumar, T., Fruttiger, M. Retinal vasculature development in health and disease. Progress in Retinal and Eye Research. 63, 1-19 (2018).
  3. Shimizu, K., Kobayashi, Y., Muraoka, K. Midperipheral fundus involvement in diabetic retinopathy. Ophthalmology. 88 (7), 601-612 (1981).
  4. Ashton, N. Retinal vascularization in health and disease: Proctor Award Lecture of the Association for Research in Ophthalmology. American Journal of Ophthalmology. 44 (4), 7-17 (1957).
  5. Hellström, A., Smith, L. E., Dammann, O. Retinopathy of prematurity. Lancet. 382 (9902), 1445-1457 (2013).
  6. Xu, Y., et al. Melatonin attenuated retinal neovascularization and neuroglial dysfunction by inhibition of HIF-1α-VEGF pathway in oxygen-induced retinopathy mice. Journal of Pineal Research. 64 (4), 12473 (2018).
  7. Cavallaro, G., et al. The pathophysiology of retinopathy of prematurity: an update of previous and recent knowledge. Acta Ophthalmologica. 92 (1), 2-20 (2014).
  8. Gilbert, C., Rahi, J., Eckstein, M., O'Sullivan, J., Foster, A. Retinopathy of prematurity in middle-income countries. Lancet. 350 (9070), 12-14 (1997).
  9. Chen, J., Smith, L. E. Retinopathy of prematurity. Angiogenesis. 10 (2), 133-140 (2007).
  10. Fielder, A., Blencowe, H., O'Connor, A., Gilbert, C. Impact of retinopathy of prematurity on ocular structures and visual functions. Archives of Disease in Childhood. Fetal and Neonatal Edition. 100 (2), 179-184 (2015).
  11. Moshfeghi, D. M. Presumed transient reactive astrocytic hyperplasia in immature retina. Retina. 26, 69-73 (2006).
  12. Kandasamy, Y., Hartley, L., Rudd, D., Smith, R. The association between systemic vascular endothelial growth factor and retinopathy of prematurity in premature infants: a systematic review. British Journal of Ophthalmology. 101 (1), 21-24 (2017).
  13. Shah, P. K., et al. Retinopathy of prematurity: Past, present and future. World Journal of Clinical Pediatrics. 5 (1), 35-46 (2016).
  14. Kinsey, V. E. Retrolental fibroplasia; cooperative study of retrolental fibroplasia and the use of oxygen. AMA Archives of Ophthalmology. 56 (4), 481-543 (1956).
  15. Tin, W., Gupta, S. Optimum oxygen therapy in preterm babies. Archives of Disease in Childhood. Fetal and Neonatal Edition. 92 (2), 143-147 (2007).
  16. Liu, C. H., Wang, Z., Sun, Y., Chen, J. Animal models of ocular angiogenesis: from development to pathologies. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology. 31 (11), 4665-4681 (2017).
  17. Ashton, N., Ward, B., Serpell, G. Effect of oxygen on developing retinal vessels with particular reference to the problem of retrolental fibroplasia. The British Journal of Ophthalmology. 38 (7), 397-432 (1954).
  18. Penn, J. S., Tolman, B. L., Lowery, L. A. Variable oxygen exposure causes preretinal neovascularization in the newborn rat. Investigative Ophthalmology & Visual Science. 34 (3), 576-585 (1993).
  19. Smith, L. E., et al. Oxygen-induced retinopathy in the mouse. Investigative Ophthalmology & Visual Science. 35 (1), 101-111 (1994).
  20. McLeod, D. S., Brownstein, R., Lutty, G. A. Vaso-obliteration in the canine model of oxygen-induced retinopathy. Investigative Ophthalmology & Visual Science. 37 (2), 300-311 (1996).
  21. Cao, R., Jensen, L. D., Söll, I., Hauptmann, G., Cao, Y. Hypoxia-induced retinal angiogenesis in zebrafish as a model to study retinopathy. PLoS One. 3 (7), 2748 (2008).
  22. Connor, K. M., et al. Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nature Protocols. 4 (11), 1565-1573 (2009).
  23. Fruttiger, M. Development of the mouse retinal vasculature: angiogenesis versus vasculogenesis. Investigative Ophthalmology & Visual Science. 43 (2), 522-527 (2002).
  24. Stahl, A., et al. The mouse retina as an angiogenesis model. Investigative Ophthalmology & Visual Science. 51 (6), 2813-2826 (2010).
  25. Rivera, J. C., et al. Ischemic retinopathies: oxidative stress and inflammation. Oxidative Medicine and Cellular Longevity. 2017, 3940241 (2017).
  26. Bashinsky, A. L. Retinopathy of prematurity. North Carolina Medical Journal. 78 (2), 124-128 (2017).
  27. Flynn, J. T., et al. Retinopathy of prematurity. Diagnosis, severity, and natural history. Ophthalmology. 94 (6), 620-629 (1987).
  28. Aguilar, E., et al. Chapter 6. Ocular models of angiogenesis. Methods in Enzymology. 444, 115-158 (2008).
  29. Liegl, R., Priglinger, C., Ohlmann, A. Induction and readout of oxygen-induced retinopathy. Methods in Molecular Biology. 1834, 179-191 (2019).
  30. Lutty, G. A., McLeod, D. S. Retinal vascular development and oxygen-induced retinopathy: a role for adenosine. Progress in Retinal and Eye Research. 22 (1), 95-111 (2003).
  31. Vähätupa, M., et al. Oxygen-induced retinopathy model for ischemic retinal diseases in rodents. Journal of Visualized Experiments: JoVE. (163), (2020).
  32. Kim, C. B., D'Amore, P. A., Connor, K. M. Revisiting the mouse model of oxygen-induced retinopathy. Eye and Brain. 8, 67-79 (2016).
  33. Gammons, M. V., Bates, D. O. Models of oxygen induced retinopathy in rodents. Methods in Molecular Biology. 1430, 317-332 (2016).
  34. Xiao, S., et al. Fully automated, deep learning segmentation of oxygen-induced retinopathy images. Journal of Clinical Investigation Insight. 2 (24), (2017).
  35. McLeod, D. S., D'Anna, S. A., Lutty, G. A. Clinical and histopathologic features of canine oxygen-induced proliferative retinopathy. Investigative Ophthalmology & Visual Science. 39 (10), 1918-1932 (1998).
  36. Penn, J. S., Johnson, B. D. Fluorescein angiography as a means of assessing retinal vascular pathology in oxygen-exposed newborn rats. Current Eye Research. 12 (6), 561-570 (1993).
  37. Mezu-Ndubuisi, O. J., et al. In vivo retinal vascular oxygen tension imaging and fluorescein angiography in the mouse model of oxygen-induced retinopathy. Investigative Ophthalmology & Visual Science. 54 (10), 6968-6972 (2013).
  38. Zeilbeck, L. F., Müller, B., Knobloch, V., Tamm, E. R., Ohlmann, A. Differential angiogenic properties of lithium chloride in vitro and in vivo. PLoS One. 9 (4), 95546 (2014).
  39. Walsh, N., Bravo-Nuevo, A., Geller, S., Stone, J. Resistance of photoreceptors in the C57BL/6-c2J, C57BL/6J, and BALB/cJ mouse strains to oxygen stress: evidence of an oxygen phenotype. Current Eye Research. 29 (6), 441-447 (2004).
  40. Zhang, Q., Zhang, Z. M. Oxygen-induced retinopathy in mice with retinal photoreceptor cell degeneration. Life Sciences. 102 (1), 28-35 (2014).
  41. Okamoto, N., et al. Transgenic mice with increased expression of vascular endothelial growth factor in the retina: a new model of intraretinal and subretinal neovascularization. The American Journal of Pathology. 151 (1), 281-291 (1997).
  42. Ohlmann, A., et al. Norrin promotes vascular regrowth after oxygen-induced retinal vessel loss and suppresses retinopathy in mice. The Journal of Neuroscience. 30 (1), 183-193 (2010).
  43. Fang, L., Barber, A. J., Shenberger, J. S. Regulation of fibroblast growth factor 2 expression in oxygen-induced retinopathy. Investigative Ophthalmology & Visual Science. 56 (1), 207-215 (2014).
  44. Chan, C. K., et al. Differential expression of pro- and antiangiogenic factors in mouse strain-dependent hypoxia-induced retinal neovascularization. Laboratory Investigation. 85 (6), 721-733 (2005).
  45. Stahl, A., et al. Postnatal weight gain modifies severity and functional outcome of oxygen-induced proliferative retinopathy. The American Journal of Pathology. 177 (6), 2715-2723 (2010).
  46. Vanhaesebrouck, S., et al. Association between retinal neovascularization and serial weight measurements in murine and human newborns. European Journal of Ophthalmology. 23 (5), 678-682 (2013).
  47. Gerschman, R., Nadig, P. W., Snell, A. C., Nye, S. W. Effect of high oxygen concentrations on eyes of newborn mice. The American Journal of Physiology. 179 (1), 115-118 (1954).
  48. Lange, C., et al. Kinetics of retinal vaso-obliteration and neovascularisation in the oxygen-induced retinopathy (OIR) mouse model. Graefe's Archive for Clinical and Experimental Ophthalmology. 247 (9), 1205-1211 (2009).
  49. Huang, S., et al. Comparison of dextran perfusion and GSI-B4 isolectin staining in a mouse model of oxygen-induced retinopathy. Eye Science. 30 (2), 70-74 (2015).
  50. Paques, M., et al. Panretinal, high-resolution color photography of the mouse fundus. Investigative Ophthalmology & Visual Science. 48 (6), 2769-2774 (2007).
  51. Fletcher, E. L., et al. Animal models of retinal disease. Progress in Molecular Biology and Translational Science. 100, 211-286 (2011).

This article has been published

Video Coming Soon

JoVE Logo


Terms of Use





Copyright © 2024 MyJoVE Corporation. All rights reserved